Journal of Lightwave Technology, volume 39, issue 8, pages 2497-2504

Design of High-Power Radiation-Balanced Silica Fiber Lasers With a Doped Core and Cladding

Publication typeJournal Article
Publication date2021-04-15
scimago Q1
wos Q2
SJR1.370
CiteScore9.4
Impact factor4.1
ISSN07338724, 15582213
Atomic and Molecular Physics, and Optics
Abstract
A model of laser cooling in a fiber with a doped cladding shows that a radiation-balanced fiber laser (RBFL) made of silica can produce substantial output powers. Bidirectional pumping is found to reduce the average temperature of the laser, enabling higher output powers while maintaining radiation-balanced operation. For a large-mode-area silica fiber doped with Yb in the core and cladding, simulations predict that output powers as large as 115 W can be achieved by bidirectionally pumping the doped cladding. This is not only slightly higher than with a Yb-doped ZBLAN fiber with the same dimensions, but the temperature gradient in silica is also about half as large. Since silica is the most common host in fiber lasers, these predictions are very promising for the near-term realization of practical RBFLs.

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?