Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition
Long Xu
1
,
Xin Lin
2
,
Linmei Liu
2
,
Jiqin Wang
2
,
Xingkui Lin
3
,
Chunhai Bai
3
,
Zhaoxiang Lin
4
,
Wei Wang
2
,
Yong Yang
2
,
Yongtian Yang
2
,
XueWu Cheng
2
,
Faquan Li
2
2
Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, China
|
Publication type: Journal Article
Publication date: 2025-01-01
scimago Q1
wos Q1
SJR: 1.039
CiteScore: 8.2
Impact factor: 4.5
ISSN: 1530437X, 15581748, 23799153
Abstract
This study introduces an innovative method to improve the quality and accuracy of LiDAR observation data using YOLOv9 image recognition technology. By correlating daytime cloud image grayscale values and nighttime sky star counts with LiDAR data, this method provides a robust solution for all-weather observations. Experimental results show that this technique can accurately predict LiDAR data quality under various environmental conditions, offering a valuable tool for atmospheric science research and meteorological monitoring.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
1
|
|
|
Measurement Science and Technology
1 publication, 50%
|
|
|
Eurasip Journal on Wireless Communications and Networking
1 publication, 50%
|
|
|
1
|
Publishers
|
1
|
|
|
IOP Publishing
1 publication, 50%
|
|
|
Springer Nature
1 publication, 50%
|
|
|
1
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
2
Total citations:
2
Citations from 2024:
2
(100%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Xu L. et al. Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition // IEEE Sensors Journal. 2025. Vol. 25. No. 1. pp. 1825-1838.
GOST all authors (up to 50)
Copy
Xu L., Lin X., Liu L., Wang J., Lin X., Bai C., Lin Z., Wang W., Yang Y., Yang Y., Cheng X., Li F. Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition // IEEE Sensors Journal. 2025. Vol. 25. No. 1. pp. 1825-1838.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1109/jsen.2024.3491303
UR - https://ieeexplore.ieee.org/document/10750265/
TI - Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition
T2 - IEEE Sensors Journal
AU - Xu, Long
AU - Lin, Xin
AU - Liu, Linmei
AU - Wang, Jiqin
AU - Lin, Xingkui
AU - Bai, Chunhai
AU - Lin, Zhaoxiang
AU - Wang, Wei
AU - Yang, Yong
AU - Yang, Yongtian
AU - Cheng, XueWu
AU - Li, Faquan
PY - 2025
DA - 2025/01/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1825-1838
IS - 1
VL - 25
SN - 1530-437X
SN - 1558-1748
SN - 2379-9153
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Xu,
author = {Long Xu and Xin Lin and Linmei Liu and Jiqin Wang and Xingkui Lin and Chunhai Bai and Zhaoxiang Lin and Wei Wang and Yong Yang and Yongtian Yang and XueWu Cheng and Faquan Li},
title = {Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition},
journal = {IEEE Sensors Journal},
year = {2025},
volume = {25},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://ieeexplore.ieee.org/document/10750265/},
number = {1},
pages = {1825--1838},
doi = {10.1109/jsen.2024.3491303}
}
Cite this
MLA
Copy
Xu, Long, et al. “Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition.” IEEE Sensors Journal, vol. 25, no. 1, Jan. 2025, pp. 1825-1838. https://ieeexplore.ieee.org/document/10750265/.