volume 25 issue 1 pages 1825-1838

Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition

Long Xu 1
Xin Lin 2
Linmei Liu 2
Jiqin Wang 2
Xingkui Lin 3
Chunhai Bai 3
Zhaoxiang Lin 4
Wei Wang 2
Yong Yang 2
Yongtian Yang 2
XueWu Cheng 2
Faquan Li 2
Publication typeJournal Article
Publication date2025-01-01
scimago Q1
wos Q1
SJR1.039
CiteScore8.2
Impact factor4.5
ISSN1530437X, 15581748, 23799153
Abstract
This study introduces an innovative method to improve the quality and accuracy of LiDAR observation data using YOLOv9 image recognition technology. By correlating daytime cloud image grayscale values and nighttime sky star counts with LiDAR data, this method provides a robust solution for all-weather observations. Experimental results show that this technique can accurately predict LiDAR data quality under various environmental conditions, offering a valuable tool for atmospheric science research and meteorological monitoring.
Found 
Found 

Top-30

Journals

1
Measurement Science and Technology
1 publication, 50%
Eurasip Journal on Wireless Communications and Networking
1 publication, 50%
1

Publishers

1
IOP Publishing
1 publication, 50%
Springer Nature
1 publication, 50%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
2
Share
Cite this
GOST |
Cite this
GOST Copy
Xu L. et al. Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition // IEEE Sensors Journal. 2025. Vol. 25. No. 1. pp. 1825-1838.
GOST all authors (up to 50) Copy
Xu L., Lin X., Liu L., Wang J., Lin X., Bai C., Lin Z., Wang W., Yang Y., Yang Y., Cheng X., Li F. Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition // IEEE Sensors Journal. 2025. Vol. 25. No. 1. pp. 1825-1838.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1109/jsen.2024.3491303
UR - https://ieeexplore.ieee.org/document/10750265/
TI - Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition
T2 - IEEE Sensors Journal
AU - Xu, Long
AU - Lin, Xin
AU - Liu, Linmei
AU - Wang, Jiqin
AU - Lin, Xingkui
AU - Bai, Chunhai
AU - Lin, Zhaoxiang
AU - Wang, Wei
AU - Yang, Yong
AU - Yang, Yongtian
AU - Cheng, XueWu
AU - Li, Faquan
PY - 2025
DA - 2025/01/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1825-1838
IS - 1
VL - 25
SN - 1530-437X
SN - 1558-1748
SN - 2379-9153
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Xu,
author = {Long Xu and Xin Lin and Linmei Liu and Jiqin Wang and Xingkui Lin and Chunhai Bai and Zhaoxiang Lin and Wei Wang and Yong Yang and Yongtian Yang and XueWu Cheng and Faquan Li},
title = {Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition},
journal = {IEEE Sensors Journal},
year = {2025},
volume = {25},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://ieeexplore.ieee.org/document/10750265/},
number = {1},
pages = {1825--1838},
doi = {10.1109/jsen.2024.3491303}
}
MLA
Cite this
MLA Copy
Xu, Long, et al. “Assessment of LiDAR-Based Atmospheric Observations Using YOLOv9 for Sky Image Recognition.” IEEE Sensors Journal, vol. 25, no. 1, Jan. 2025, pp. 1825-1838. https://ieeexplore.ieee.org/document/10750265/.