том 13 издание 3 страницы 192-205

Learning to Automatically Catch Potholes in Worldwide Road Scene Images

Тип публикацииJournal Article
Дата публикации2021-01-01
scimago Q1
wos Q1
БС1
SJR1.100
CiteScore11.5
Impact factor5.0
ISSN19391390, 19411197
Computer Science Applications
Mechanical Engineering
Automotive Engineering
Краткое описание
Among several road hazards that are present in any paved way in the world, potholes are one of the most annoying and involving higher maintenance costs. There is an increasing interest on the automated detection of these hazards enabled by technological and research progress. Our work tackled the challenge of pothole detection from images of real world road scenes. The main novelty resides on the application of latest progress in Artificial Intelligence to learn the visual appearance of potholes. We built a large dataset of images with pothole annotations. They contained road scenes from different cities in the world, taken with different cameras, vehicles and viewpoints under varied environmental conditions. Then, we fine-tuned four different object detection models based on Deep Neural Networks. We achieved mean average precision above 75% and we used the pothole detector on the Nvidia DrivePX2 platform running at 5–6 frames per second. Moreover, it was deployed on a real vehicle driving at speeds below 60 km/h to notify the detected potholes to a given Internet of Things platform as part of AUTOPILOT H2020 project.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
IEEE Access
4 публикации, 16%
Sensors
2 публикации, 8%
IEEE Internet of Things Journal
2 публикации, 8%
IEEE Transactions on Intelligent Transportation Systems
2 публикации, 8%
Journal of Sensor and Actuator Networks
1 публикация, 4%
Transportation Safety and Environment
1 публикация, 4%
Physica Scripta
1 публикация, 4%
Heliyon
1 публикация, 4%
Discover Applied Sciences
1 публикация, 4%
IET Image Processing
1 публикация, 4%
Journal of Traffic and Transportation Engineering (English Edition)
1 публикация, 4%
AIP Conference Proceedings
1 публикация, 4%
1
2
3
4

Издатели

2
4
6
8
10
12
14
Institute of Electrical and Electronics Engineers (IEEE)
14 публикаций, 56%
MDPI
3 публикации, 12%
Elsevier
2 публикации, 8%
Oxford University Press
1 публикация, 4%
IOP Publishing
1 публикация, 4%
Springer Nature
1 публикация, 4%
Institution of Engineering and Technology (IET)
1 публикация, 4%
AIP Publishing
1 публикация, 4%
IGI Global
1 публикация, 4%
2
4
6
8
10
12
14
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
25
Поделиться
Цитировать
ГОСТ |
Цитировать
Yebes J. J. et al. Learning to Automatically Catch Potholes in Worldwide Road Scene Images // IEEE Intelligent Transportation Systems Magazine. 2021. Vol. 13. No. 3. pp. 192-205.
ГОСТ со всеми авторами (до 50) Скопировать
Yebes J. J., MONTERO D., Arriola I. Learning to Automatically Catch Potholes in Worldwide Road Scene Images // IEEE Intelligent Transportation Systems Magazine. 2021. Vol. 13. No. 3. pp. 192-205.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/mits.2019.2926370
UR - https://doi.org/10.1109/mits.2019.2926370
TI - Learning to Automatically Catch Potholes in Worldwide Road Scene Images
T2 - IEEE Intelligent Transportation Systems Magazine
AU - Yebes, J Javier
AU - MONTERO, DAVID
AU - Arriola, Ignacio
PY - 2021
DA - 2021/01/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 192-205
IS - 3
VL - 13
SN - 1939-1390
SN - 1941-1197
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Yebes,
author = {J Javier Yebes and DAVID MONTERO and Ignacio Arriola},
title = {Learning to Automatically Catch Potholes in Worldwide Road Scene Images},
journal = {IEEE Intelligent Transportation Systems Magazine},
year = {2021},
volume = {13},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://doi.org/10.1109/mits.2019.2926370},
number = {3},
pages = {192--205},
doi = {10.1109/mits.2019.2926370}
}
MLA
Цитировать
Yebes, J. Javier, et al. “Learning to Automatically Catch Potholes in Worldwide Road Scene Images.” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 3, Jan. 2021, pp. 192-205. https://doi.org/10.1109/mits.2019.2926370.