A Review on Machine Learning for EEG Signal Processing in Bioengineering
1
Bioengineering Department, Santa Clara University, Santa Clara, CA, USA
|
2
AI Research, Silicon Valley, CA, USA
|
3
Тип публикации: Journal Article
Дата публикации: 2021-01-01
scimago Q1
wos Q1
БС1
SJR: 2.762
CiteScore: 43.2
Impact factor: 12.0
ISSN: 19373333, 19411189
PubMed ID:
32011262
Biomedical Engineering
Краткое описание
Electroencephalography (EEG) has been a staple method for identifying certain health conditions in patients since its discovery. Due to the many different types of classifiers available to use, the analysis methods are also equally numerous. In this review, we will be examining specifically machine learning methods that have been developed for EEG analysis with bioengineering applications. We reviewed literature from 1988 to 2018 to capture previous and current classification methods for EEG in multiple applications. From this information, we are able to determine the overall effectiveness of each machine learning method as well as the key characteristics. We have found that all the primary methods used in machine learning have been applied in some form in EEG classification. This ranges from Naive-Bayes to Decision Tree/Random Forest, to Support Vector Machine (SVM). Supervised learning methods are on average of higher accuracy than their unsupervised counterparts. This includes SVM and KNN. While each of the methods individually is limited in their accuracy in their respective applications, there is hope that the combination of methods when implemented properly has a higher overall classification accuracy. This paper provides a comprehensive overview of Machine Learning applications used in EEG analysis. It also gives an overview of each of the methods and general applications that each is best suited to.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
2
4
6
8
10
12
14
16
18
|
|
|
Sensors
17 публикаций, 4.79%
|
|
|
Computers in Biology and Medicine
9 публикаций, 2.54%
|
|
|
Biomedical Signal Processing and Control
9 публикаций, 2.54%
|
|
|
Applied Sciences (Switzerland)
8 публикаций, 2.25%
|
|
|
IEEE Access
7 публикаций, 1.97%
|
|
|
Scientific Reports
7 публикаций, 1.97%
|
|
|
Lecture Notes in Computer Science
7 публикаций, 1.97%
|
|
|
IEEE Transactions on Instrumentation and Measurement
6 публикаций, 1.69%
|
|
|
IEEE Transactions on Neural Systems and Rehabilitation Engineering
5 публикаций, 1.41%
|
|
|
Frontiers in Neuroscience
5 публикаций, 1.41%
|
|
|
Brain Sciences
4 публикации, 1.13%
|
|
|
IEEE Journal of Biomedical and Health Informatics
4 публикации, 1.13%
|
|
|
Neural Computing and Applications
4 публикации, 1.13%
|
|
|
Communications in Computer and Information Science
4 публикации, 1.13%
|
|
|
Multimedia Tools and Applications
3 публикации, 0.85%
|
|
|
Journal of Neural Engineering
3 публикации, 0.85%
|
|
|
Computer Methods and Programs in Biomedicine
3 публикации, 0.85%
|
|
|
ACM Computing Surveys
3 публикации, 0.85%
|
|
|
Neurocomputing
3 публикации, 0.85%
|
|
|
BioMedInformatics
2 публикации, 0.56%
|
|
|
Electronics (Switzerland)
2 публикации, 0.56%
|
|
|
Bioengineering
2 публикации, 0.56%
|
|
|
Artificial Intelligence Review
2 публикации, 0.56%
|
|
|
PLoS ONE
2 публикации, 0.56%
|
|
|
Diagnostics
2 публикации, 0.56%
|
|
|
HardwareX
2 публикации, 0.56%
|
|
|
IFMBE Proceedings
2 публикации, 0.56%
|
|
|
Biomedicines
2 публикации, 0.56%
|
|
|
Brain Informatics
2 публикации, 0.56%
|
|
|
2
4
6
8
10
12
14
16
18
|
Издатели
|
10
20
30
40
50
60
70
80
90
100
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
98 публикаций, 27.61%
|
|
|
Elsevier
86 публикаций, 24.23%
|
|
|
Springer Nature
60 публикаций, 16.9%
|
|
|
MDPI
51 публикация, 14.37%
|
|
|
Frontiers Media S.A.
13 публикаций, 3.66%
|
|
|
Wiley
9 публикаций, 2.54%
|
|
|
IOP Publishing
5 публикаций, 1.41%
|
|
|
Taylor & Francis
5 публикаций, 1.41%
|
|
|
Association for Computing Machinery (ACM)
5 публикаций, 1.41%
|
|
|
AIP Publishing
4 публикации, 1.13%
|
|
|
Public Library of Science (PLoS)
2 публикации, 0.56%
|
|
|
ifmbe proceedings
2 публикации, 0.56%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
2 публикации, 0.56%
|
|
|
IGI Global
2 публикации, 0.56%
|
|
|
SAGE
1 публикация, 0.28%
|
|
|
Emerald
1 публикация, 0.28%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 0.28%
|
|
|
F1000 Research
1 публикация, 0.28%
|
|
|
Walter de Gruyter
1 публикация, 0.28%
|
|
|
Oxford University Press
1 публикация, 0.28%
|
|
|
Institute of Electrical Engineers of Japan (IEE Japan)
1 публикация, 0.28%
|
|
|
Korean College of Neuropsychopharmacology
1 публикация, 0.28%
|
|
|
EDP Sciences
1 публикация, 0.28%
|
|
|
Fuji Technology Press
1 публикация, 0.28%
|
|
|
10
20
30
40
50
60
70
80
90
100
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
355
Всего цитирований:
355
Цитирований c 2024:
217
(61.13%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Hosseini M. et al. A Review on Machine Learning for EEG Signal Processing in Bioengineering // IEEE Reviews in Biomedical Engineering. 2021. Vol. 14. pp. 204-218.
ГОСТ со всеми авторами (до 50)
Скопировать
Hosseini M., Hosseini A., Ahi K. A Review on Machine Learning for EEG Signal Processing in Bioengineering // IEEE Reviews in Biomedical Engineering. 2021. Vol. 14. pp. 204-218.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/rbme.2020.2969915
UR - https://doi.org/10.1109/rbme.2020.2969915
TI - A Review on Machine Learning for EEG Signal Processing in Bioengineering
T2 - IEEE Reviews in Biomedical Engineering
AU - Hosseini, Mohammad-Parsa
AU - Hosseini, Amin
AU - Ahi, Kiarash
PY - 2021
DA - 2021/01/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 204-218
VL - 14
PMID - 32011262
SN - 1937-3333
SN - 1941-1189
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Hosseini,
author = {Mohammad-Parsa Hosseini and Amin Hosseini and Kiarash Ahi},
title = {A Review on Machine Learning for EEG Signal Processing in Bioengineering},
journal = {IEEE Reviews in Biomedical Engineering},
year = {2021},
volume = {14},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://doi.org/10.1109/rbme.2020.2969915},
pages = {204--218},
doi = {10.1109/rbme.2020.2969915}
}