Тип публикации: Proceedings Article
Дата публикации: 2023-07-01
Краткое описание
Peak detection (PD) is a valuable technique in time series analysis that can be employed to identify significant local maxima or minima within the time series. Peaks are significant points in a signal or spectrum that are of interest, as they can represent important features in various applications such as chromatography, spectroscopy, biomedical signal processing, and image analysis, to name a few. However, due to the unpredictable and fluctuating nature of many real-time sources, current peak detection algorithms usually fail to detect stable peaks across varied real-time time series. Furthermore, they experience a dip in performance when trying to develop a general algorithm applicable across various application areas. To address this challenge, we have developed a novel and robust online two-stage peak detection algorithm (TSPD). Our TSPD algorithm can adapt to a wide range of application areas by adjusting only two tunable parameters in its computational process. To demonstrate the efficacy of our algorithm, we conducted experiments using seven real-world datasets and demonstrated the improved performance of the TSPD algorithm over other notable existing techniques.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Cluster Computing
1 публикация, 50%
|
|
|
1
|
Издатели
|
1
|
|
|
Springer Nature
1 публикация, 50%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 50%
|
|
|
1
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Всего цитирований:
2
Цитирований c 2024:
2
(100%)