Unsupervised SFQ-Based Spiking Neural Network
Тип публикации: Journal Article
Дата публикации: 2024-05-01
scimago Q2
wos Q3
БС2
SJR: 0.508
CiteScore: 3.4
Impact factor: 1.8
ISSN: 10518223, 15582515, 23787074
Electronic, Optical and Magnetic Materials
Condensed Matter Physics
Electrical and Electronic Engineering
Краткое описание
Single Flux Quantum (SFQ) technology represents a groundbreaking advancement in computational efficiency and ultra-high-speed neuromorphic processing. The key features of SFQ technology, particularly data representation, transmission, and processing through SFQ pulses, closely mirror fundamental aspects of biological neural structures. Consequently, SFQ-based circuits emerge as an ideal candidate for realizing Spiking Neural Networks (SNNs). This study presents a proof-of-concept demonstration of an SFQ-based SNN architecture, showcasing its capacity for ultra-fast switching at remarkably low energy consumption per output activity. Notably, our work introduces innovative approaches: (i) We introduce a novel spike-timing-dependent plasticity mechanism to update synapses and to trace spike-activity by incorporating a leaky non-destructive readout circuit. (ii) We propose a novel method to dynamically regulate the threshold behavior of leaky integrate and fire superconductor neurons, enhancing the adaptability of our SNN architecture. (iii) Our research incorporates a novel winner-take-all mechanism, aligning with practical strategies for SNN development and enabling effective decision-making processes. The effectiveness of these proposed structural enhancements is evaluated by integrating high-level models into the BindsNET framework. By leveraging BindsNET, we model the online training of an SNN, integrating the novel structures into the learning process. To ensure the robustness and functionality of our circuits, we employ JoSIM for circuit parameter extraction and functional verification through simulation.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Superconductor Science and Technology
3 публикации, 42.86%
|
|
|
IEEE Transactions on Applied Superconductivity
2 публикации, 28.57%
|
|
|
npj Unconventional Computing
1 публикация, 14.29%
|
|
|
Frontiers in Materials
1 публикация, 14.29%
|
|
|
1
2
3
|
Издатели
|
1
2
3
|
|
|
IOP Publishing
3 публикации, 42.86%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 28.57%
|
|
|
Springer Nature
1 публикация, 14.29%
|
|
|
Frontiers Media S.A.
1 публикация, 14.29%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
7
Всего цитирований:
7
Цитирований c 2024:
7
(100%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Karamuftuogl M. A. et al. Unsupervised SFQ-Based Spiking Neural Network // IEEE Transactions on Applied Superconductivity. 2024. Vol. 34. No. 3. pp. 1-8.
ГОСТ со всеми авторами (до 50)
Скопировать
Karamuftuogl M. A., Ucpinar B. Z., Razmkhah S., Kamal M., Pedram M. Unsupervised SFQ-Based Spiking Neural Network // IEEE Transactions on Applied Superconductivity. 2024. Vol. 34. No. 3. pp. 1-8.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tasc.2024.3367618
UR - https://ieeexplore.ieee.org/document/10440490/
TI - Unsupervised SFQ-Based Spiking Neural Network
T2 - IEEE Transactions on Applied Superconductivity
AU - Karamuftuogl, Mustafa Altay
AU - Ucpinar, Beyza Zeynep
AU - Razmkhah, Sasan
AU - Kamal, Mehdi
AU - Pedram, M.
PY - 2024
DA - 2024/05/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1-8
IS - 3
VL - 34
SN - 1051-8223
SN - 1558-2515
SN - 2378-7074
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Karamuftuogl,
author = {Mustafa Altay Karamuftuogl and Beyza Zeynep Ucpinar and Sasan Razmkhah and Mehdi Kamal and M. Pedram},
title = {Unsupervised SFQ-Based Spiking Neural Network},
journal = {IEEE Transactions on Applied Superconductivity},
year = {2024},
volume = {34},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {may},
url = {https://ieeexplore.ieee.org/document/10440490/},
number = {3},
pages = {1--8},
doi = {10.1109/tasc.2024.3367618}
}
Цитировать
MLA
Скопировать
Karamuftuogl, Mustafa Altay, et al. “Unsupervised SFQ-Based Spiking Neural Network.” IEEE Transactions on Applied Superconductivity, vol. 34, no. 3, May. 2024, pp. 1-8. https://ieeexplore.ieee.org/document/10440490/.