,
том 35
,
издание 6
,
страницы 5872-5884
SIEVL-Track: Exploring Semantic Information Enhancement for Visual-Language Object Tracking
Тип публикации: Journal Article
Дата публикации: 2025-06-01
scimago Q1
wos Q1
БС1
SJR: 1.858
CiteScore: 15.4
Impact factor: 11.1
ISSN: 10518215, 15582205
Краткое описание
With the assistance of language descriptions, Visual-Language (VL) object tracking can obtain more accurate semantic information compared to traditional Visual-Only object tracking. However, the ability of current VL trackers to obtain target semantic information has not been fully developed due to limitations such as wasted modeling capabilities and insufficient utilization of historical temporal information. On the one hand, the modeling output from Transformer shallow encoders often does not directly participate in the prediction of tracking results, resulting in a certain degree of model capability waste. On the other hand, the semantic information of historical tracking results has also not been fully utilized in the tracking process, resulting in a certain degree of lack of semantic assistance capability. Therefore, we propose a novel hierarchical multi-stage VL tracker called SIEVL-Track to enhance target semantic information. Specifically, we first design a multi-stage visual language tracking framework for modeling multi-scale semantic information in Visual-Language tracking pipeline. Secondly, we propose a selective deep and shallow semantic information fusion module (S-DSFM) that explicitly integrates shallow output features into deep output features, so to reduce the waste of modeling capabilities and obtain more high-frequency semantic information related to the target. Finally, we design a temporal cue modeling module based on linguistic classification and multi-frame historical information(MHLS-TCM), with the aim of more comprehensive utilization of historical temporal semantic information. Benefit from the above designs, our VL tracker can obtain stronger target semantic information. Competitive performance from extensive experimental results on five popular vision-language tracking benchmarks, including LaSOT, OTB99-Lang, WebUAV-3M, LaSOText and TNL2K, have demonstrated the superiority and effectiveness of our SIEVL-Track.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
IEEE Transactions on Circuits and Systems for Video Technology
1 публикация, 100%
|
|
|
1
|
Издатели
|
1
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 100%
|
|
|
1
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Всего цитирований:
1
Цитирований c 2024:
1
(100%)
Самый цитирующий журнал
Цитирований в журнале:
1
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Li N. et al. SIEVL-Track: Exploring Semantic Information Enhancement for Visual-Language Object Tracking // IEEE Transactions on Circuits and Systems for Video Technology. 2025. Vol. 35. No. 6. pp. 5872-5884.
ГОСТ со всеми авторами (до 50)
Скопировать
Li N., Zhong B., Liang Q., Mo Z., Nong J., Song S. SIEVL-Track: Exploring Semantic Information Enhancement for Visual-Language Object Tracking // IEEE Transactions on Circuits and Systems for Video Technology. 2025. Vol. 35. No. 6. pp. 5872-5884.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tcsvt.2025.3531375
UR - https://ieeexplore.ieee.org/document/10845881/
TI - SIEVL-Track: Exploring Semantic Information Enhancement for Visual-Language Object Tracking
T2 - IEEE Transactions on Circuits and Systems for Video Technology
AU - Li, Ning
AU - Zhong, Bineng
AU - Liang, Qihua
AU - Mo, Zhiyi
AU - Nong, Jian
AU - Song, Shuxiang
PY - 2025
DA - 2025/06/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 5872-5884
IS - 6
VL - 35
SN - 1051-8215
SN - 1558-2205
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Li,
author = {Ning Li and Bineng Zhong and Qihua Liang and Zhiyi Mo and Jian Nong and Shuxiang Song},
title = {SIEVL-Track: Exploring Semantic Information Enhancement for Visual-Language Object Tracking},
journal = {IEEE Transactions on Circuits and Systems for Video Technology},
year = {2025},
volume = {35},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jun},
url = {https://ieeexplore.ieee.org/document/10845881/},
number = {6},
pages = {5872--5884},
doi = {10.1109/tcsvt.2025.3531375}
}
Цитировать
MLA
Скопировать
Li, Ning, et al. “SIEVL-Track: Exploring Semantic Information Enhancement for Visual-Language Object Tracking.” IEEE Transactions on Circuits and Systems for Video Technology, vol. 35, no. 6, Jun. 2025, pp. 5872-5884. https://ieeexplore.ieee.org/document/10845881/.