A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs
Zhixiao Wang
1
,
Yahui Chai
2
,
Chengcheng Sun
2
,
Xiaobin Rui
1
,
Hao Mi
2
,
Xinyu Zhang
3
,
P M Yu
4
Тип публикации: Journal Article
Дата публикации: 2024-02-01
scimago Q1
wos Q1
БС1
SJR: 4.450
CiteScore: 25.7
Impact factor: 10.5
ISSN: 21682267, 21682275
PubMed ID:
35759583
Computer Science Applications
Electrical and Electronic Engineering
Information Systems
Software
Control and Systems Engineering
Human-Computer Interaction
Краткое описание
Link prediction is an important task in social network analysis and mining because of its various applications. A large number of link prediction methods have been proposed. Among them, the deep learning-based embedding methods exhibit excellent performance, which encodes each node and edge as an embedding vector, enabling easy integration with traditional machine learning algorithms. However, there still remain some unsolved problems for this kind of methods, especially in the steps of node embedding and edge embedding. First, they either share exactly the same weight among all neighbors or assign a completely different weight to each node to obtain the node embedding. Second, they can hardly keep the symmetry of edge embeddings obtained from node representations by direct concatenation or other binary operations such as averaging and Hadamard product. In order to solve these problems, we propose a weighted symmetric graph embedding approach for link prediction. In node embedding, the proposed approach aggregates neighbors in different orders with different aggregating weights. In edge embedding, the proposed approach bidirectionally concatenates node pairs both forwardly and backwardly to guarantee the symmetry of edge representations while preserving local structural information. The experimental results show that our proposed approach can better predict network links, outperforming the state-of-the-art methods. The appropriate aggregating weight assignment and the bidirectional concatenation enable us to learn more accurate and symmetric edge representations for link prediction.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
IEEE Transactions on Cybernetics
4 публикации, 19.05%
|
|
|
Electronics (Switzerland)
4 публикации, 19.05%
|
|
|
Journal of Physics: Conference Series
1 публикация, 4.76%
|
|
|
Knowledge-Based Systems
1 публикация, 4.76%
|
|
|
Information Sciences
1 публикация, 4.76%
|
|
|
Neurocomputing
1 публикация, 4.76%
|
|
|
Journal of Manufacturing Systems
1 публикация, 4.76%
|
|
|
International Journal of Production Research
1 публикация, 4.76%
|
|
|
IEEE Transactions on Knowledge and Data Engineering
1 публикация, 4.76%
|
|
|
IEEE Transactions on Network Science and Engineering
1 публикация, 4.76%
|
|
|
Neural Networks
1 публикация, 4.76%
|
|
|
Physica A: Statistical Mechanics and its Applications
1 публикация, 4.76%
|
|
|
IEEE Transactions on Dependable and Secure Computing
1 публикация, 4.76%
|
|
|
IEEE Transactions on Circuits and Systems I: Regular Papers
1 публикация, 4.76%
|
|
|
Visual Computer
1 публикация, 4.76%
|
|
|
1
2
3
4
|
Издатели
|
1
2
3
4
5
6
7
8
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
8 публикаций, 38.1%
|
|
|
Elsevier
6 публикаций, 28.57%
|
|
|
MDPI
4 публикации, 19.05%
|
|
|
IOP Publishing
1 публикация, 4.76%
|
|
|
Taylor & Francis
1 публикация, 4.76%
|
|
|
Springer Nature
1 публикация, 4.76%
|
|
|
1
2
3
4
5
6
7
8
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
21
Всего цитирований:
21
Цитирований c 2024:
20
(95.24%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Wang Z. et al. A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs // IEEE Transactions on Cybernetics. 2024. Vol. 54. No. 2. pp. 1037-1047.
ГОСТ со всеми авторами (до 50)
Скопировать
Wang Z., Chai Y., Sun C., Rui X., Mi H., Zhang X., Yu P. M. A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs // IEEE Transactions on Cybernetics. 2024. Vol. 54. No. 2. pp. 1037-1047.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tcyb.2022.3181810
UR - https://doi.org/10.1109/tcyb.2022.3181810
TI - A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs
T2 - IEEE Transactions on Cybernetics
AU - Wang, Zhixiao
AU - Chai, Yahui
AU - Sun, Chengcheng
AU - Rui, Xiaobin
AU - Mi, Hao
AU - Zhang, Xinyu
AU - Yu, P M
PY - 2024
DA - 2024/02/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1037-1047
IS - 2
VL - 54
PMID - 35759583
SN - 2168-2267
SN - 2168-2275
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Wang,
author = {Zhixiao Wang and Yahui Chai and Chengcheng Sun and Xiaobin Rui and Hao Mi and Xinyu Zhang and P M Yu},
title = {A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs},
journal = {IEEE Transactions on Cybernetics},
year = {2024},
volume = {54},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {feb},
url = {https://doi.org/10.1109/tcyb.2022.3181810},
number = {2},
pages = {1037--1047},
doi = {10.1109/tcyb.2022.3181810}
}
Цитировать
MLA
Скопировать
Wang, Zhixiao, et al. “A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs.” IEEE Transactions on Cybernetics, vol. 54, no. 2, Feb. 2024, pp. 1037-1047. https://doi.org/10.1109/tcyb.2022.3181810.