IEEE Transactions on Electronics Packaging Manufacturing, volume 33, issue 4, pages 303-311

Board-Level Vibration Failure Criteria for Printed Circuit Assemblies: An Experimental Approach

R. A. Amy 1
G. S. Aglietti 1
G. Richardson 2
Publication typeJournal Article
Publication date2010-10-01
SJR
CiteScore
Impact factor
ISSN1521334X, 15580822
Electrical and Electronic Engineering
Industrial and Manufacturing Engineering
Abstract
The assessment of the capability of electronic equipment, to withstand harsh vibration environments, is an issue faced in several branches of engineering. Various researchers have studied the vibration response of electronic boards using different parameters, e.g., local board accelerations, bending moments, curvatures, etc., as a simpler alternative to very detailed stress analysis. However, the issue of what parameter best correlates with vibration failures remains open. This paper investigates this specific problem using an experimental approach to assess whether it is possible to correlate failures produced by intense vibrations, with a single macroscopic parameter such as the local board acceleration, curvature, or surface strain. Printed circuit boards populated with a grid of electronic components (20 different types and 32 identical components per type) have been subjected to vibration testing and the results show that there is a very good correlation between the board curvature (and its surface strain) and failures of the electronics. The work also shows that-for the components tested here-local board acceleration cannot be used to predict components failures. Although this research has focused on a particular set of components, these are representative of typical classes of electronic components, and therefore it should be possible to generalize the conclusions to similar hardware.
Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?