том 21 издание 6 страницы 4435-4446

Privacy-Preserving Lightweight Time-Series Anomaly Detection for Resource-Limited Industrial IoT Edge Devices

Тип публикацииJournal Article
Дата публикации2025-06-01
scimago Q1
wos Q1
БС1
SJR3.416
CiteScore22.5
Impact factor9.9
ISSN15513203, 19410050
Краткое описание
Identifying anomalies directly on edge devices rather than in the cloud, known as edge computing, is essential for Industry 4.0. However, the limited computing and storage resources on edge devices render traditional cloud-based anomaly detection models ineffective. To solve this issue, a privacy-preserving lightweight time-series anomaly detection model, named PPLAD, is proposed for resource-limited industrial Internet of Things (IoT) edge devices via global and local similarity discrepancy. First, PPLAD directly uses data similarity instead of raw data as model input, to achieve privacy-preserving. Second, PPLAD applies trainable Gaussian distribution rather than deep neural network as model structure, to achieve high timeliness and low cost. Specifically, PPLAD constructs a trainable Gaussian distribution with only one parameter for each timestamp to model its similarity with neighbors. Third, a global and local adversarial learning strategy is developed to amplify the discrepancy between local similarity and global similarity for each timestamp. Finally, the discrepancy is used to accurately identify timestamp-level anomalies. To the best of authors' knowledge, this is the first work to build an industrial anomaly detection model using only learnable Gaussian distributions. Extensive experiments on eight public industrial multisensor datasets and three edge devices demonstrate that PPLAD outperforms several state-of-the-art models.
Найдено 
Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
3
Поделиться
Цитировать
ГОСТ |
Цитировать
Chen L. et al. Privacy-Preserving Lightweight Time-Series Anomaly Detection for Resource-Limited Industrial IoT Edge Devices // IEEE Transactions on Industrial Informatics. 2025. Vol. 21. No. 6. pp. 4435-4446.
ГОСТ со всеми авторами (до 50) Скопировать
Chen L., Xu Y., Li M., Hu B., Guo H., Liu Z. Privacy-Preserving Lightweight Time-Series Anomaly Detection for Resource-Limited Industrial IoT Edge Devices // IEEE Transactions on Industrial Informatics. 2025. Vol. 21. No. 6. pp. 4435-4446.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/tii.2025.3538127
UR - https://ieeexplore.ieee.org/document/10908726/
TI - Privacy-Preserving Lightweight Time-Series Anomaly Detection for Resource-Limited Industrial IoT Edge Devices
T2 - IEEE Transactions on Industrial Informatics
AU - Chen, Lei
AU - Xu, Yepeng
AU - Li, Ming
AU - Hu, Bowen
AU - Guo, Haomiao
AU - Liu, Zhaohua
PY - 2025
DA - 2025/06/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 4435-4446
IS - 6
VL - 21
SN - 1551-3203
SN - 1941-0050
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Chen,
author = {Lei Chen and Yepeng Xu and Ming Li and Bowen Hu and Haomiao Guo and Zhaohua Liu},
title = {Privacy-Preserving Lightweight Time-Series Anomaly Detection for Resource-Limited Industrial IoT Edge Devices},
journal = {IEEE Transactions on Industrial Informatics},
year = {2025},
volume = {21},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jun},
url = {https://ieeexplore.ieee.org/document/10908726/},
number = {6},
pages = {4435--4446},
doi = {10.1109/tii.2025.3538127}
}
MLA
Цитировать
Chen, Lei, et al. “Privacy-Preserving Lightweight Time-Series Anomaly Detection for Resource-Limited Industrial IoT Edge Devices.” IEEE Transactions on Industrial Informatics, vol. 21, no. 6, Jun. 2025, pp. 4435-4446. https://ieeexplore.ieee.org/document/10908726/.