том 31 страницы 3591-3605

Multiview Spectral Clustering With Bipartite Graph

Тип публикацииJournal Article
Дата публикации2022-05-13
scimago Q1
wos Q1
БС1
SJR2.502
CiteScore22.5
Impact factor13.7
ISSN10577149, 19410042
Computer Graphics and Computer-Aided Design
Software
Краткое описание
Multi-view spectral clustering has become appealing due to its good performance in capturing the correlations among all views. However, on one hand, many existing methods usually require a quadratic or cubic complexity for graph construction or eigenvalue decomposition of Laplacian matrix; on the other hand, they are inefficient and unbearable burden to be applied to large scale data sets, which can be easily obtained in the era of big data. Moreover, the existing methods cannot encode the complementary information between adjacency matrices, i.e. , similarity graphs of views and the low-rank spatial structure of adjacency matrix of each view. To address these limitations, we develop a novel multi-view spectral clustering model. Our model well encodes the complementary information by Schatten $p$ -norm regularization on the third tensor whose lateral slices are composed of the adjacency matrices of the corresponding views. To further improve the computational efficiency, we leverage anchor graphs of views instead of full adjacency matrices of the corresponding views, and then present a fast model that encodes the complementary information embedded in anchor graphs of views by Schatten $p$ -norm regularization on the tensor bipartite graph. Finally, an efficient alternating algorithm is derived to optimize our model. The constructed sequence was proved to converge to the stationary KKT point. Extensive experimental results indicate that our method has good performance.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Neurocomputing
8 публикаций, 11.59%
IEEE Transactions on Image Processing
6 публикаций, 8.7%
IEEE Transactions on Neural Networks and Learning Systems
6 публикаций, 8.7%
Expert Systems with Applications
5 публикаций, 7.25%
Neural Networks
5 публикаций, 7.25%
IEEE Transactions on Circuits and Systems for Video Technology
4 публикации, 5.8%
Information Fusion
3 публикации, 4.35%
Knowledge-Based Systems
3 публикации, 4.35%
IEEE Transactions on Multimedia
2 публикации, 2.9%
Pattern Recognition
2 публикации, 2.9%
IEEE Transactions on Pattern Analysis and Machine Intelligence
2 публикации, 2.9%
IEEE Transactions on Knowledge and Data Engineering
2 публикации, 2.9%
IETE Journal of Research
1 публикация, 1.45%
Electronics (Switzerland)
1 публикация, 1.45%
Artificial Intelligence Review
1 публикация, 1.45%
Digital Signal Processing: A Review Journal
1 публикация, 1.45%
IEEE Signal Processing Letters
1 публикация, 1.45%
IEEE Transactions on Emerging Topics in Computational Intelligence
1 публикация, 1.45%
ACM Transactions on Knowledge Discovery from Data
1 публикация, 1.45%
Signal Processing
1 публикация, 1.45%
IEEE Transactions on Geoscience and Remote Sensing
1 публикация, 1.45%
1
2
3
4
5
6
7
8

Издатели

5
10
15
20
25
30
Institute of Electrical and Electronics Engineers (IEEE)
29 публикаций, 42.03%
Elsevier
28 публикаций, 40.58%
Association for Computing Machinery (ACM)
7 публикаций, 10.14%
Taylor & Francis
1 публикация, 1.45%
MDPI
1 публикация, 1.45%
Springer Nature
1 публикация, 1.45%
Cold Spring Harbor Laboratory
1 публикация, 1.45%
5
10
15
20
25
30
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
69
Поделиться
Цитировать
ГОСТ |
Цитировать
Yang H. et al. Multiview Spectral Clustering With Bipartite Graph // IEEE Transactions on Image Processing. 2022. Vol. 31. pp. 3591-3605.
ГОСТ со всеми авторами (до 50) Скопировать
Yang H., Gao Q., Xia W., Yang M., GAO X. Multiview Spectral Clustering With Bipartite Graph // IEEE Transactions on Image Processing. 2022. Vol. 31. pp. 3591-3605.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/tip.2022.3171411
UR - https://doi.org/10.1109/tip.2022.3171411
TI - Multiview Spectral Clustering With Bipartite Graph
T2 - IEEE Transactions on Image Processing
AU - Yang, Haizhou
AU - Gao, Quanxue
AU - Xia, Wei
AU - Yang, Ming
AU - GAO, XINBO
PY - 2022
DA - 2022/05/13
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 3591-3605
VL - 31
PMID - 35560071
SN - 1057-7149
SN - 1941-0042
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Yang,
author = {Haizhou Yang and Quanxue Gao and Wei Xia and Ming Yang and XINBO GAO},
title = {Multiview Spectral Clustering With Bipartite Graph},
journal = {IEEE Transactions on Image Processing},
year = {2022},
volume = {31},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {may},
url = {https://doi.org/10.1109/tip.2022.3171411},
pages = {3591--3605},
doi = {10.1109/tip.2022.3171411}
}