,
том 34
,
издание 12
,
страницы 10930-10943
Sparse Index Tracking With K-Sparsity or ε-Deviation Constraint via ℓ₀-Norm Minimization
Тип публикации: Journal Article
Дата публикации: 2023-12-01
scimago Q1
wos Q1
БС1
SJR: 3.686
CiteScore: 24.7
Impact factor: 8.9
ISSN: 2162237X, 21622388
PubMed ID:
35576417
Computer Science Applications
Computer Networks and Communications
Artificial Intelligence
Software
Краткое описание
Sparse index tracking, as one of the passive investment strategies, is to track a benchmark financial index via constructing a portfolio with a few assets in a market index. It can be considered as parameter learning in an adaptive system, in which we periodically update the selected assets and their investment percentages based on the sliding window approach. However, many existing algorithms for sparse index tracking cannot explicitly and directly control the number of assets or the tracking error. This article formulates sparse index tracking as two constrained optimization problems and then proposes two algorithms, namely, nonnegative orthogonal matching pursuit with projected gradient descent (NNOMP-PGD) and alternating direction method of multipliers for ℓ₀-norm (ADMM-ℓ₀). The NNOMP-PGD aims at minimizing the tracking error subject to the number of selected assets ≤ a predefined number. With the NNOMP-PGD, investors can directly and explicitly control the number of selected assets. The ADMM-ℓ₀ aims at minimizing the number of selected assets subject to the tracking error that is upper bounded by a preset threshold. It can directly and explicitly control the tracking error. The convergence of the two proposed algorithms is also presented. With our algorithms, investors can explicitly and directly control the number of selected assets or the tracking error of the resultant portfolio. In addition, numerical experiments demonstrate that the proposed algorithms outperform the existing approaches.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Communications in Computer and Information Science
2 публикации, 7.14%
|
|
|
IEEE Transactions on Aerospace and Electronic Systems
2 публикации, 7.14%
|
|
|
IEEE Transactions on Cybernetics
2 публикации, 7.14%
|
|
|
Mathematics
1 публикация, 3.57%
|
|
|
Entropy
1 публикация, 3.57%
|
|
|
Soft Computing
1 публикация, 3.57%
|
|
|
Cognitive Computation
1 публикация, 3.57%
|
|
|
IEEE Transactions on Neural Networks and Learning Systems
1 публикация, 3.57%
|
|
|
IEEE Antennas and Wireless Propagation Letters
1 публикация, 3.57%
|
|
|
Signal Processing
1 публикация, 3.57%
|
|
|
Journal of Mathematics
1 публикация, 3.57%
|
|
|
Expert Systems with Applications
1 публикация, 3.57%
|
|
|
IEEE Transactions on Geoscience and Remote Sensing
1 публикация, 3.57%
|
|
|
IEEE Transactions on Antennas and Propagation
1 публикация, 3.57%
|
|
|
Statistical Theory and Related Fields
1 публикация, 3.57%
|
|
|
Buildings
1 публикация, 3.57%
|
|
|
IEEE Signal Processing Letters
1 публикация, 3.57%
|
|
|
IEEE Transactions on Circuits and Systems for Video Technology
1 публикация, 3.57%
|
|
|
IEEE Transactions on Instrumentation and Measurement
1 публикация, 3.57%
|
|
|
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
1 публикация, 3.57%
|
|
|
Lecture Notes in Computer Science
1 публикация, 3.57%
|
|
|
Journal of Global Optimization
1 публикация, 3.57%
|
|
|
IEEE Open Journal of Signal Processing
1 публикация, 3.57%
|
|
|
IEEE Transactions on Signal Processing
1 публикация, 3.57%
|
|
|
1
2
|
Издатели
|
2
4
6
8
10
12
14
16
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
15 публикаций, 53.57%
|
|
|
Springer Nature
6 публикаций, 21.43%
|
|
|
MDPI
3 публикации, 10.71%
|
|
|
Elsevier
2 публикации, 7.14%
|
|
|
Wiley
1 публикация, 3.57%
|
|
|
Taylor & Francis
1 публикация, 3.57%
|
|
|
2
4
6
8
10
12
14
16
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
28
Всего цитирований:
28
Цитирований c 2025:
12
(42.86%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Li X. P. et al. Sparse Index Tracking With K-Sparsity or ε-Deviation Constraint via ℓ₀-Norm Minimization // IEEE Transactions on Neural Networks and Learning Systems. 2023. Vol. 34. No. 12. pp. 10930-10943.
ГОСТ со всеми авторами (до 50)
Скопировать
Li X. P., Shi Z., Leung C., So H. Sparse Index Tracking With K-Sparsity or ε-Deviation Constraint via ℓ₀-Norm Minimization // IEEE Transactions on Neural Networks and Learning Systems. 2023. Vol. 34. No. 12. pp. 10930-10943.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tnnls.2022.3171819
UR - https://doi.org/10.1109/tnnls.2022.3171819
TI - Sparse Index Tracking With K-Sparsity or ε-Deviation Constraint via ℓ₀-Norm Minimization
T2 - IEEE Transactions on Neural Networks and Learning Systems
AU - Li, Xiao Peng
AU - Shi, Zhang-Lei
AU - Leung, Chi-sing
AU - So, Hing-Cheung
PY - 2023
DA - 2023/12/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 10930-10943
IS - 12
VL - 34
PMID - 35576417
SN - 2162-237X
SN - 2162-2388
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Li,
author = {Xiao Peng Li and Zhang-Lei Shi and Chi-sing Leung and Hing-Cheung So},
title = {Sparse Index Tracking With K-Sparsity or ε-Deviation Constraint via ℓ₀-Norm Minimization},
journal = {IEEE Transactions on Neural Networks and Learning Systems},
year = {2023},
volume = {34},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {dec},
url = {https://doi.org/10.1109/tnnls.2022.3171819},
number = {12},
pages = {10930--10943},
doi = {10.1109/tnnls.2022.3171819}
}
Цитировать
MLA
Скопировать
Li, Xiao Peng, et al. “Sparse Index Tracking With K-Sparsity or ε-Deviation Constraint via ℓ₀-Norm Minimization.” IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 12, Dec. 2023, pp. 10930-10943. https://doi.org/10.1109/tnnls.2022.3171819.