том 21 издание 1 страницы 994-1011

Survey on Machine Learning-Enabled Network Slicing: Covering the Entire Life Cycle

Adnei Donatti 1
Sand Luz Correa 2
Joberto S B Martins 3
Antonio Abelem 4
Cristiano Bonato Both 5
Flávio De Oliveira Silva 6
José A. Suruagy 7
Rafael Pasquini 6
Rodrigo Moreira 8
Kleber V. Cardoso 2
Tereza Cristina Melo De Brito Carvalho 1
1
 
Department of Computer Engineering and Digital Systems, University of São Paulo, São Paulo, Brazil
2
 
Institute of Informatics, Federal University of Goiás, Goiânia, Brazil
4
 
Computer Science Department, Federal University of Pará, Belém, Brazil
6
 
Faculty of Computing, Federal University of Uberlândia, Uberlândia, Brazil
8
 
Institute of Exact and Technological Sciences, Federal University of Viçosa, Viçosa, Brazil
Тип публикацииJournal Article
Дата публикации2024-02-01
scimago Q1
wos Q1
БС1
SJR1.500
CiteScore10.5
Impact factor5.4
ISSN19324537, 23737379
Electrical and Electronic Engineering
Computer Networks and Communications
Краткое описание
Network slicing (NS) is becoming an essential element of service management and orchestration in communication networks, starting from mobile cellular networks and extending to a global initiative. NS can reshape the deployment and operation of traditional services, support the introduction of new ones, vastly advance how resource allocation performs in networks, and notably change the user experience. Most of these promises still need to reach the real world, but they have already demonstrated their capabilities in many experimental infrastructures. However, complexity, scale, and dynamism are pressuring for a Machine Learning (ML)-enabled NS approach in which autonomy and efficiency are critical features. This trend is relatively new but growing fast and attracting much attention. This article surveys Artificial Intelligence-enabled NS and its potential use in current and future infrastructures. We have covered state-of-the-art ML-enabled NS for all network segments and organized the literature according to the phases of the NS life cycle. We also discuss challenges and opportunities in research on this topic.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
IEEE Access
4 публикации, 14.81%
IEEE Transactions on Network and Service Management
3 публикации, 11.11%
IEEE Communications Surveys and Tutorials
3 публикации, 11.11%
Computer Networks
1 публикация, 3.7%
Physical Communication
1 публикация, 3.7%
Engineering Applications of Artificial Intelligence
1 публикация, 3.7%
Future Generation Computer Systems
1 публикация, 3.7%
International Journal of Communication Systems
1 публикация, 3.7%
Future Internet
1 публикация, 3.7%
IEEE Transactions on Vehicular Technology
1 публикация, 3.7%
IEEE Open Journal of the Communications Society
1 публикация, 3.7%
Artificial Intelligence Review
1 публикация, 3.7%
IETE Journal of Research
1 публикация, 3.7%
Electronics (Switzerland)
1 публикация, 3.7%
1
2
3
4

Издатели

2
4
6
8
10
12
14
16
18
Institute of Electrical and Electronics Engineers (IEEE)
17 публикаций, 62.96%
Elsevier
4 публикации, 14.81%
MDPI
2 публикации, 7.41%
Association for Computing Machinery (ACM)
1 публикация, 3.7%
Wiley
1 публикация, 3.7%
Springer Nature
1 публикация, 3.7%
Taylor & Francis
1 публикация, 3.7%
2
4
6
8
10
12
14
16
18
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
27
Поделиться
Цитировать
ГОСТ |
Цитировать
Donatti A. et al. Survey on Machine Learning-Enabled Network Slicing: Covering the Entire Life Cycle // IEEE Transactions on Network and Service Management. 2024. Vol. 21. No. 1. pp. 994-1011.
ГОСТ со всеми авторами (до 50) Скопировать
Donatti A., Correa S. L., Martins J. S. B., Abelem A., Both C. B., Silva F. D. O., Suruagy J. A., Pasquini R., Moreira R., Cardoso K. V., Carvalho T. C. M. D. B. Survey on Machine Learning-Enabled Network Slicing: Covering the Entire Life Cycle // IEEE Transactions on Network and Service Management. 2024. Vol. 21. No. 1. pp. 994-1011.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/tnsm.2023.3287651
UR - https://ieeexplore.ieee.org/document/10158410/
TI - Survey on Machine Learning-Enabled Network Slicing: Covering the Entire Life Cycle
T2 - IEEE Transactions on Network and Service Management
AU - Donatti, Adnei
AU - Correa, Sand Luz
AU - Martins, Joberto S B
AU - Abelem, Antonio
AU - Both, Cristiano Bonato
AU - Silva, Flávio De Oliveira
AU - Suruagy, José A.
AU - Pasquini, Rafael
AU - Moreira, Rodrigo
AU - Cardoso, Kleber V.
AU - Carvalho, Tereza Cristina Melo De Brito
PY - 2024
DA - 2024/02/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 994-1011
IS - 1
VL - 21
SN - 1932-4537
SN - 2373-7379
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Donatti,
author = {Adnei Donatti and Sand Luz Correa and Joberto S B Martins and Antonio Abelem and Cristiano Bonato Both and Flávio De Oliveira Silva and José A. Suruagy and Rafael Pasquini and Rodrigo Moreira and Kleber V. Cardoso and Tereza Cristina Melo De Brito Carvalho},
title = {Survey on Machine Learning-Enabled Network Slicing: Covering the Entire Life Cycle},
journal = {IEEE Transactions on Network and Service Management},
year = {2024},
volume = {21},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {feb},
url = {https://ieeexplore.ieee.org/document/10158410/},
number = {1},
pages = {994--1011},
doi = {10.1109/tnsm.2023.3287651}
}
MLA
Цитировать
Donatti, Adnei, et al. “Survey on Machine Learning-Enabled Network Slicing: Covering the Entire Life Cycle.” IEEE Transactions on Network and Service Management, vol. 21, no. 1, Feb. 2024, pp. 994-1011. https://ieeexplore.ieee.org/document/10158410/.