Multivariate Time Series Characterization and Forecasting of VoIP Traffic in Real Mobile Networks
2
Client Engineering Department, IBM, Milan, Italy
|
Тип публикации: Journal Article
Дата публикации: 2024-02-01
scimago Q1
wos Q1
БС1
SJR: 1.500
CiteScore: 10.5
Impact factor: 5.4
ISSN: 19324537, 23737379
Electrical and Electronic Engineering
Computer Networks and Communications
Краткое описание
Predicting the behavior of real-time traffic (e.g., VoIP) in mobility scenarios could help the operators to better plan their network infrastructures and to optimize the allocation of resources. Accordingly, in this work the authors propose a forecasting analysis of crucial QoS/QoE descriptors (some of which neglected in the technical literature) of VoIP traffic in a real mobile environment. The problem is formulated in terms of a multivariate time series analysis. Such a formalization allows to discover and model the temporal relationships among various descriptors and to forecast their behaviors for future periods. Techniques such as Vector Autoregressive models and machine learning (deep-based and tree-based) approaches are employed and compared in terms of performance and time complexity, by reframing the multivariate time series problem into a supervised learning one. Moreover, a series of auxiliary analyses (stationarity, orthogonal impulse responses, etc.) are performed to discover the analytical structure of the time series and to provide deep insights about their relationships. The whole theoretical analysis has an experimental counterpart since a set of trials across a real-world LTE-Advanced environment has been performed to collect, post-process and analyze about 600,000 voice packets, organized per flow and differentiated per codec.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Computer Networks
2 публикации, 15.38%
|
|
|
Engineering Applications of Artificial Intelligence
2 публикации, 15.38%
|
|
|
Mechanical Systems and Signal Processing
1 публикация, 7.69%
|
|
|
Applied Soft Computing Journal
1 публикация, 7.69%
|
|
|
Journal of Supercomputing
1 публикация, 7.69%
|
|
|
Lecture Notes in Networks and Systems
1 публикация, 7.69%
|
|
|
Journal of Forecasting
1 публикация, 7.69%
|
|
|
Neurocomputing
1 публикация, 7.69%
|
|
|
1
2
|
Издатели
|
1
2
3
4
5
6
7
|
|
|
Elsevier
7 публикаций, 53.85%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 23.08%
|
|
|
Springer Nature
2 публикации, 15.38%
|
|
|
Wiley
1 публикация, 7.69%
|
|
|
1
2
3
4
5
6
7
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
13
Всего цитирований:
13
Цитирований c 2024:
11
(84.61%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Di Mauro M. et al. Multivariate Time Series Characterization and Forecasting of VoIP Traffic in Real Mobile Networks // IEEE Transactions on Network and Service Management. 2024. Vol. 21. No. 1. pp. 851-865.
ГОСТ со всеми авторами (до 50)
Скопировать
Di Mauro M., Galatro G., Postiglione F., Song W., Liotta A. Multivariate Time Series Characterization and Forecasting of VoIP Traffic in Real Mobile Networks // IEEE Transactions on Network and Service Management. 2024. Vol. 21. No. 1. pp. 851-865.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tnsm.2023.3295748
UR - https://ieeexplore.ieee.org/document/10184084/
TI - Multivariate Time Series Characterization and Forecasting of VoIP Traffic in Real Mobile Networks
T2 - IEEE Transactions on Network and Service Management
AU - Di Mauro, Mario
AU - Galatro, Giovanni
AU - Postiglione, Fabio
AU - Song, Wei
AU - Liotta, Antonio
PY - 2024
DA - 2024/02/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 851-865
IS - 1
VL - 21
SN - 1932-4537
SN - 2373-7379
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Di Mauro,
author = {Mario Di Mauro and Giovanni Galatro and Fabio Postiglione and Wei Song and Antonio Liotta},
title = {Multivariate Time Series Characterization and Forecasting of VoIP Traffic in Real Mobile Networks},
journal = {IEEE Transactions on Network and Service Management},
year = {2024},
volume = {21},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {feb},
url = {https://ieeexplore.ieee.org/document/10184084/},
number = {1},
pages = {851--865},
doi = {10.1109/tnsm.2023.3295748}
}
Цитировать
MLA
Скопировать
Di Mauro, Mario, et al. “Multivariate Time Series Characterization and Forecasting of VoIP Traffic in Real Mobile Networks.” IEEE Transactions on Network and Service Management, vol. 21, no. 1, Feb. 2024, pp. 851-865. https://ieeexplore.ieee.org/document/10184084/.