Wasserstein-Based Graph Alignment
Hermina Petric Maretic
1
,
Mireille El Gheche
2
,
Matthias Minder
1
,
Giovanni Chierchia
3
,
Pascal Frossard
1
2
Sony AI, Sony Europe B.V., Schlieren, Switzerland
|
3
Université Gustave Eiffel, LIGM (UMR 8049), ESIEE Paris, Noisy-le-Grand, CNRS, France
|
Тип публикации: Journal Article
Дата публикации: 2022-04-26
scimago Q1
wos Q1
БС1
SJR: 1.201
CiteScore: 6.8
Impact factor: 4.9
ISSN: 2373776X, 23737778
Information Systems
Computer Networks and Communications
Signal Processing
Краткое описание
A novel method for comparing non-aligned graphs of various sizes is proposed, based on the Wasserstein distance between graph signal distributions induced by the respective graph Laplacian matrices. Specifically, a new formulation for the one-to-many graph alignment problem is casted, which aims at matching a node in the smaller graph with one or more nodes in the larger graph. By incorporating optimal transport into our graph comparison framework, a structurally-meaningful graph distance, and a signal transportation plan that models the structure of graph data are generated. The resulting alignment problem is solved with stochastic gradient descent, where a novel Dykstra operator is used to ensure that the solution is a one-to-many (soft) assignment matrix. The performance of our novel framework is demonstrated on graph alignment, graph classification and graph signal transportation. Our method is shown to lead to significant improvements with respect to the state-of-the-art algorithms on each ofthese tasks.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
IEEE Transactions on Signal and Information Processing over Networks
2 публикации, 40%
|
|
|
Journal of the Royal Statistical Society. Series B: Statistical Methodology
1 публикация, 20%
|
|
|
Bioinformatics
1 публикация, 20%
|
|
|
1
2
|
Издатели
|
1
2
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 40%
|
|
|
Oxford University Press
2 публикации, 40%
|
|
|
Cold Spring Harbor Laboratory
1 публикация, 20%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
5
Всего цитирований:
5
Цитирований c 2024:
4
(80%)
Самый цитирующий журнал
Цитирований в журнале:
2
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Maretic H. P. et al. Wasserstein-Based Graph Alignment // IEEE Transactions on Signal and Information Processing over Networks. 2022. Vol. 8. pp. 353-363.
ГОСТ со всеми авторами (до 50)
Скопировать
Maretic H. P., Gheche M. E., Minder M., Chierchia G., Frossard P. Wasserstein-Based Graph Alignment // IEEE Transactions on Signal and Information Processing over Networks. 2022. Vol. 8. pp. 353-363.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tsipn.2022.3169632
UR - https://doi.org/10.1109/tsipn.2022.3169632
TI - Wasserstein-Based Graph Alignment
T2 - IEEE Transactions on Signal and Information Processing over Networks
AU - Maretic, Hermina Petric
AU - Gheche, Mireille El
AU - Minder, Matthias
AU - Chierchia, Giovanni
AU - Frossard, Pascal
PY - 2022
DA - 2022/04/26
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 353-363
VL - 8
SN - 2373-776X
SN - 2373-7778
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Maretic,
author = {Hermina Petric Maretic and Mireille El Gheche and Matthias Minder and Giovanni Chierchia and Pascal Frossard},
title = {Wasserstein-Based Graph Alignment},
journal = {IEEE Transactions on Signal and Information Processing over Networks},
year = {2022},
volume = {8},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {apr},
url = {https://doi.org/10.1109/tsipn.2022.3169632},
pages = {353--363},
doi = {10.1109/tsipn.2022.3169632}
}