Wasserstein-Based Graph Alignment

Hermina Petric Maretic 1
Mireille El Gheche 2
Matthias Minder 1
Giovanni Chierchia 3
Pascal Frossard 1
2
 
Sony AI, Sony Europe B.V., Schlieren, Switzerland
3
 
Université Gustave Eiffel, LIGM (UMR 8049), ESIEE Paris, Noisy-le-Grand, CNRS, France
Тип публикацииJournal Article
Дата публикации2022-04-26
scimago Q1
wos Q1
БС1
SJR1.201
CiteScore6.8
Impact factor4.9
ISSN2373776X, 23737778
Information Systems
Computer Networks and Communications
Signal Processing
Краткое описание
A novel method for comparing non-aligned graphs of various sizes is proposed, based on the Wasserstein distance between graph signal distributions induced by the respective graph Laplacian matrices. Specifically, a new formulation for the one-to-many graph alignment problem is casted, which aims at matching a node in the smaller graph with one or more nodes in the larger graph. By incorporating optimal transport into our graph comparison framework, a structurally-meaningful graph distance, and a signal transportation plan that models the structure of graph data are generated. The resulting alignment problem is solved with stochastic gradient descent, where a novel Dykstra operator is used to ensure that the solution is a one-to-many (soft) assignment matrix. The performance of our novel framework is demonstrated on graph alignment, graph classification and graph signal transportation. Our method is shown to lead to significant improvements with respect to the state-of-the-art algorithms on each ofthese tasks.
Найдено 
Найдено 

Топ-30

Журналы

1
2
IEEE Transactions on Signal and Information Processing over Networks
2 публикации, 40%
Journal of the Royal Statistical Society. Series B: Statistical Methodology
1 публикация, 20%
Bioinformatics
1 публикация, 20%
1
2

Издатели

1
2
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 40%
Oxford University Press
2 публикации, 40%
Cold Spring Harbor Laboratory
1 публикация, 20%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
5
Поделиться
Цитировать
ГОСТ |
Цитировать
Maretic H. P. et al. Wasserstein-Based Graph Alignment // IEEE Transactions on Signal and Information Processing over Networks. 2022. Vol. 8. pp. 353-363.
ГОСТ со всеми авторами (до 50) Скопировать
Maretic H. P., Gheche M. E., Minder M., Chierchia G., Frossard P. Wasserstein-Based Graph Alignment // IEEE Transactions on Signal and Information Processing over Networks. 2022. Vol. 8. pp. 353-363.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/tsipn.2022.3169632
UR - https://doi.org/10.1109/tsipn.2022.3169632
TI - Wasserstein-Based Graph Alignment
T2 - IEEE Transactions on Signal and Information Processing over Networks
AU - Maretic, Hermina Petric
AU - Gheche, Mireille El
AU - Minder, Matthias
AU - Chierchia, Giovanni
AU - Frossard, Pascal
PY - 2022
DA - 2022/04/26
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 353-363
VL - 8
SN - 2373-776X
SN - 2373-7778
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Maretic,
author = {Hermina Petric Maretic and Mireille El Gheche and Matthias Minder and Giovanni Chierchia and Pascal Frossard},
title = {Wasserstein-Based Graph Alignment},
journal = {IEEE Transactions on Signal and Information Processing over Networks},
year = {2022},
volume = {8},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {apr},
url = {https://doi.org/10.1109/tsipn.2022.3169632},
pages = {353--363},
doi = {10.1109/tsipn.2022.3169632}
}