том 48 издание 7 страницы 1191-1210

A New Decomposition-Based NSGA-II for Many-Objective Optimization

Тип публикацииJournal Article
Дата публикации2018-07-01
scimago Q1
wos Q1
БС1
SJR3.254
CiteScore20.5
Impact factor8.7
ISSN21682216, 21682232
Computer Science Applications
Electrical and Electronic Engineering
Software
Control and Systems Engineering
Human-Computer Interaction
Краткое описание
Multiobjective evolutionary algorithms (MOEAs) have proven their effectiveness and efficiency in solving problems with two or three objectives. However, recent studies show that MOEAs face many difficulties when tackling problems involving a larger number of objectives as their behavior becomes similar to a random walk in the search space since most individuals are nondominated with respect to each other. Motivated by the interesting results of decomposition-based approaches and preference-based ones, we propose in this paper a new decomposition-based dominance relation to deal with many-objective optimization problems and a new diversity factor based on the penalty-based boundary intersection method. Our reference point-based dominance (RP-dominance), has the ability to create a strict partial order on the set of nondominated solutions using a set of well-distributed reference points. The RP-dominance is subsequently used to substitute the Pareto dominance in nondominated sorting genetic algorithm-II (NSGA-II). The augmented MOEA, labeled as RP-dominance-based NSGA-II, has been statistically demonstrated to provide competitive and oftentimes better results when compared against four recently proposed decomposition-based MOEAs on commonly-used benchmark problems involving up to 20 objectives. In addition, the efficacy of the algorithm on a realistic water management problem is showcased.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
IEEE Transactions on Systems, Man, and Cybernetics: Systems
22 публикации, 8.8%
Swarm and Evolutionary Computation
17 публикаций, 6.8%
Information Sciences
16 публикаций, 6.4%
Applied Soft Computing Journal
14 публикаций, 5.6%
IEEE Access
14 публикаций, 5.6%
Expert Systems with Applications
12 публикаций, 4.8%
IEEE Transactions on Cybernetics
10 публикаций, 4%
IEEE Transactions on Evolutionary Computation
7 публикаций, 2.8%
Applied Intelligence
6 публикаций, 2.4%
Complex & Intelligent Systems
6 публикаций, 2.4%
Mathematics
5 публикаций, 2%
Soft Computing
5 публикаций, 2%
Sustainability
3 публикации, 1.2%
Journal of Intelligent and Fuzzy Systems
3 публикации, 1.2%
Applied Sciences (Switzerland)
3 публикации, 1.2%
Knowledge-Based Systems
3 публикации, 1.2%
Concurrency Computation Practice and Experience
3 публикации, 1.2%
Complexity
3 публикации, 1.2%
Lecture Notes in Computer Science
3 публикации, 1.2%
Communications in Computer and Information Science
3 публикации, 1.2%
Annals of Operations Research
2 публикации, 0.8%
Neural Computing and Applications
2 публикации, 0.8%
Energy Conversion and Management
2 публикации, 0.8%
Advances in Intelligent Systems and Computing
2 публикации, 0.8%
Mathematical Problems in Engineering
2 публикации, 0.8%
Evolutionary Intelligence
2 публикации, 0.8%
Mathematical Biosciences and Engineering
2 публикации, 0.8%
Journal of Construction Engineering and Management - ASCE
1 публикация, 0.4%
Journal of Transportation Engineering Part A: Systems
1 публикация, 0.4%
5
10
15
20
25

Издатели

10
20
30
40
50
60
70
80
90
Elsevier
83 публикации, 33.2%
Institute of Electrical and Electronics Engineers (IEEE)
68 публикаций, 27.2%
Springer Nature
43 публикации, 17.2%
MDPI
15 публикаций, 6%
Hindawi Limited
6 публикаций, 2.4%
Wiley
5 публикаций, 2%
American Society of Civil Engineers (ASCE)
3 публикации, 1.2%
IOS Press
3 публикации, 1.2%
Association for Computing Machinery (ACM)
3 публикации, 1.2%
World Scientific
2 публикации, 0.8%
Frontiers Media S.A.
2 публикации, 0.8%
SAGE
2 публикации, 0.8%
Arizona State University
2 публикации, 0.8%
Institution of Engineering and Technology (IET)
1 публикация, 0.4%
IWA Publishing
1 публикация, 0.4%
Korean Society of Mechanical Engineers
1 публикация, 0.4%
Ain Shams University
1 публикация, 0.4%
Taylor & Francis
1 публикация, 0.4%
IGI Global
1 публикация, 0.4%
Oxford University Press
1 публикация, 0.4%
Zhejiang University Press
1 публикация, 0.4%
King Saud University
1 публикация, 0.4%
Research Square Platform LLC
1 публикация, 0.4%
Emerald
1 публикация, 0.4%
Cambridge University Press
1 публикация, 0.4%
10
20
30
40
50
60
70
80
90
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
250
Поделиться
Цитировать
ГОСТ |
Цитировать
Elarbi M. et al. A New Decomposition-Based NSGA-II for Many-Objective Optimization // IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018. Vol. 48. No. 7. pp. 1191-1210.
ГОСТ со всеми авторами (до 50) Скопировать
Elarbi M., Bechikh S., Gupta A., Ben Said L., Ong Y. K. A New Decomposition-Based NSGA-II for Many-Objective Optimization // IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018. Vol. 48. No. 7. pp. 1191-1210.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/tsmc.2017.2654301
UR - https://doi.org/10.1109/tsmc.2017.2654301
TI - A New Decomposition-Based NSGA-II for Many-Objective Optimization
T2 - IEEE Transactions on Systems, Man, and Cybernetics: Systems
AU - Elarbi, Maha
AU - Bechikh, Slim
AU - Gupta, Abhishek
AU - Ben Said, Lamjed
AU - Ong, Yew Kwang
PY - 2018
DA - 2018/07/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1191-1210
IS - 7
VL - 48
SN - 2168-2216
SN - 2168-2232
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2018_Elarbi,
author = {Maha Elarbi and Slim Bechikh and Abhishek Gupta and Lamjed Ben Said and Yew Kwang Ong},
title = {A New Decomposition-Based NSGA-II for Many-Objective Optimization},
journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems},
year = {2018},
volume = {48},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jul},
url = {https://doi.org/10.1109/tsmc.2017.2654301},
number = {7},
pages = {1191--1210},
doi = {10.1109/tsmc.2017.2654301}
}
MLA
Цитировать
Elarbi, Maha, et al. “A New Decomposition-Based NSGA-II for Many-Objective Optimization.” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 7, Jul. 2018, pp. 1191-1210. https://doi.org/10.1109/tsmc.2017.2654301.
Профили