IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, volume 55, issue 3, pages 559-572
Single-ensemble-based eigen-processing methods for color flow imaging - Part I. The Hankel-SVD filter
A. C. H. Yu
1
,
R.S.C. Cobbold
2
Publication type: Journal Article
Publication date: 2008-03-28
scimago Q1
SJR: 0.945
CiteScore: 7.7
Impact factor: 3
ISSN: 08853010, 15258955
PubMed ID:
18407847
Electrical and Electronic Engineering
Instrumentation
Acoustics and Ultrasonics
Abstract
Because of their adaptability to the slow-time signal contents, eigen-based filters have shown potential in improving the flow detection performance of color flow images. This paper proposes a new eigen-based filter called the Hankel-SVD filter that is intended to process each slow- time ensemble individually. The new filter is derived using the notion of principal Hankel component analysis, and it achieves clutter suppression by retaining only the principal components whose order is greater than the clutter eigen- space dimension estimated from a frequency-based analysis algorithm. To assess its efficacy, the Hankel-SVD filter was first applied to synthetic slow-time data (ensemble size: 10) simulated from two different sets of flow parameters that model: (1) arterial imaging (blood velocity: 0 to 38.5 cm/s, tissue motion: up to 2 mm/s, transmit frequency: 5 MHz, pulse repetition period: 0.4 ms) and 2) deep vessel imaging (blood velocity: 0 to 19.2 cm/s, tissue motion: up to 2 cm/s, transmit frequency: 2 MHz, pulse repetition period: 2.0 ms). In the simulation analysis, the post-filter clutter- to-blood signal ratio (CBR) was computed as a function of blood velocity. Results show that for the same effective stopband size (50 Hz), the Hankel-SVD filter has a narrower transition region in the post-filter CBR curve than that of another type of adaptive filter called the clutter- downmixing filter. The practical efficacy of the proposed filter was tested by application to in vivo color flow data obtained from the human carotid arteries (transmit frequency: 4 MHz, pulse repetition period: 0.333 ms, ensemble size: 10). The resulting power images show that the Hankel-SVD filter can better distinguish between blood and moving- tissue regions (about 9 dB separation in power) than the clutter-downmixing filter and a fixed-rank multi-ensemble- based eigen-filter (which showed a 2 to 3 dB separation).
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.