,
том 71
,
издание 1
,
страницы 117-126
Transcranial Phase Correction Using Pulse-echo Ultrasound and Deep Learning: A 2D Numerical Study
Тип публикации: Journal Article
Дата публикации: 2024-01-01
scimago Q1
wos Q1
БС1
SJR: 0.814
CiteScore: 8.3
Impact factor: 3.7
ISSN: 08853010, 15258955
PubMed ID:
38060357
Electrical and Electronic Engineering
Instrumentation
Acoustics and Ultrasonics
Краткое описание
Phase aberration caused by human skulls severely degrades the quality of transcranial ultrasound images, posing a major challenge in the practical application of transcranial ultrasound techniques in adults. Aberration can be corrected if the skull profile (i.e., thickness distribution) and speed of sound (SOS) are known. However, accurately estimating the skull profile and SOS using ultrasound with a physics-based approach is challenging due to the complexity of the interaction between ultrasound and the skull. A deep learning approach is proposed herein to estimate the skull profile and SOS using ultrasound radiofrequency (RF) signals backscattered from the skull. A numerical study was performed to test the approach's feasibility. Realistic numerical skull models were constructed from computed tomography (CT) scans of five ex vivo human skulls in this numerical study. Acoustic simulations were performed on 3595 skull segments to generate array-based ultrasound backscattered signals. A deep learning model was developed and trained to estimate skull thickness and SOS from RF channel data. The trained model was shown to be highly accurate. The mean absolute error (MAE) was 0.15 mm (2% error) for thickness estimation and 13 m/s (0.5% error) for SOS estimation. The Pearson correlation coefficient between the estimated and ground-truth values was 0.99 for thickness and 0.95 for SOS. Aberration correction performed using deep-learning-estimated skull thickness and SOS values yielded significantly improved beam focusing (e.g., narrower beams) and transcranial imaging quality (e.g., improved spatial resolution and reduced artifacts) compared with no aberration correction. The results demonstrate the feasibility of the proposed approach for transcranial phase aberration correction.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
Ultrasonics
4 публикации, 19.05%
|
|
|
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
3 публикации, 14.29%
|
|
|
Medical Physics
1 публикация, 4.76%
|
|
|
Medical Image Analysis
1 публикация, 4.76%
|
|
|
Journal of Pharmacy and Pharmacology
1 публикация, 4.76%
|
|
|
IEEE Transactions on Biomedical Engineering
1 публикация, 4.76%
|
|
|
1
2
3
4
|
Издатели
|
2
4
6
8
10
12
14
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
14 публикаций, 66.67%
|
|
|
Elsevier
5 публикаций, 23.81%
|
|
|
Wiley
1 публикация, 4.76%
|
|
|
Oxford University Press
1 публикация, 4.76%
|
|
|
2
4
6
8
10
12
14
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
21
Всего цитирований:
21
Цитирований c 2024:
19
(90.48%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Tian Z. et al. Transcranial Phase Correction Using Pulse-echo Ultrasound and Deep Learning: A 2D Numerical Study // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2024. Vol. 71. No. 1. pp. 117-126.
ГОСТ со всеми авторами (до 50)
Скопировать
Tian Z., Olmstead M., Jing Y., Han A. Transcranial Phase Correction Using Pulse-echo Ultrasound and Deep Learning: A 2D Numerical Study // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2024. Vol. 71. No. 1. pp. 117-126.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tuffc.2023.3340597
UR - https://ieeexplore.ieee.org/document/10347244/
TI - Transcranial Phase Correction Using Pulse-echo Ultrasound and Deep Learning: A 2D Numerical Study
T2 - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
AU - Tian, Zixuan
AU - Olmstead, Matthew
AU - Jing, Yun
AU - Han, Aiguo
PY - 2024
DA - 2024/01/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 117-126
IS - 1
VL - 71
PMID - 38060357
SN - 0885-3010
SN - 1525-8955
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Tian,
author = {Zixuan Tian and Matthew Olmstead and Yun Jing and Aiguo Han},
title = {Transcranial Phase Correction Using Pulse-echo Ultrasound and Deep Learning: A 2D Numerical Study},
journal = {IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control},
year = {2024},
volume = {71},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jan},
url = {https://ieeexplore.ieee.org/document/10347244/},
number = {1},
pages = {117--126},
doi = {10.1109/tuffc.2023.3340597}
}
Цитировать
MLA
Скопировать
Tian, Zixuan, et al. “Transcranial Phase Correction Using Pulse-echo Ultrasound and Deep Learning: A 2D Numerical Study.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 71, no. 1, Jan. 2024, pp. 117-126. https://ieeexplore.ieee.org/document/10347244/.