IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, volume 71, issue 5, pages 607-620

Review of the Low-Temperature Acoustic Properties of Water, Aqueous Solutions, Lipids, and Soft Biological Tissues

Publication typeJournal Article
Publication date2024-05-01
scimago Q1
wos Q2
SJR0.945
CiteScore7.7
Impact factor3
ISSN08853010, 15258955
Electrical and Electronic Engineering
Instrumentation
Acoustics and Ultrasonics
Kalayeh K., Fowlkes J.B., Claflin J., Fabiilli M.L., Schultz W.W., Sack B.S.
2023-01-01 citations by CoLab: 10 Abstract  
The goal of this study was to evaluate ultrasound contrast microbubbles (MB) stability during a typical cystometrogram (CMG) for bladder pressure measurement application using the subharmonic-aided pressure estimation technique. A detailed study of MB stability was required given two unique characteristics of this application: first, bulk infusion of MBs into the bladder through the CMG infusion system, and second, duration of a typical CMG which may last up to 30 min. To do so, a series of size measurement and contrast-enhanced ultrasound imaging studies under different conditions were performed and the effects of variables that we hypothesized have an effect on MB stability, namely, i) IV bag air headspace, ii) MB dilution factor, and iii) CMG infusion system were investigated. The results verified that air volume in intravenous (IV) bag headspace was not enough to have a significant effect on MB stability during a CMG. We also showed that higher MB dosage results in a more stable condition. Finally, the results indicated that the CMG infusion system adversely affects MB stability. In summary, to ensure MB stability during the entire duration of a CMG, lower filling rates (limited by estimated bladder capacity in clinical applications) and/or higher MB dosage (limited by FDA regulations and shadowing artifact) and/or the consideration of alternative catheter design may be needed.
Xu R., Treeby B.E., Martin E.
2023-01-01 citations by CoLab: 6 Abstract  
The development of methods to safely rewarm large cryopreserved biological samples remains a barrier to the widespread adoption of cryopreservation. Here, experiments and simulations were performed to demonstrate that ultrasound can increase rewarming rates relative to thermal conduction alone. An ultrasonic rewarming setup based on a custom 444 kHz tubular piezoelectric transducer was designed, characterized, and tested with 2 ml cryovials filled with frozen ground beef. Rewarming rates were characterized in the −20 °C to 5 °C range. Thermal conduction-based rewarming was compared to thermal conduction plus ultrasonic rewarming, demonstrating a tenfold increase in rewarming rate when ultrasound was applied. The maximum recorded rewarming rate with ultrasound was 57° C/min, approximately 2.5 times faster than with thermal conduction alone. Coupled acoustic and thermal simulations were developed and showed good agreement with the heating rates demonstrated experimentally and were also used to demonstrate spatial heating distributions with small (<3° C) temperature differentials throughout the sample when the sample was below 0° C. The experiments and simulations demonstrate the potential for ultrasonic cryovial rewarming with a possible application to large volume rewarming, as faster rewarming rates may improve the viability of cryopreserved tissues and reduce the time needed for cells to regain normal function.
Kalayeh K., Fowlkes J.B., Chen A., Yeras S., Fabiilli M.L., Claflin J., Daignault-Newton S., Schultz W.W., Sack B.S.
Investigative Radiology scimago Q1 wos Q1
2022-08-29 citations by CoLab: 14 Abstract  
The long-term goal of this study is to investigate the efficacy of a novel, ultrasound-based technique called subharmonic-aided pressure estimation (SHAPE) to measure bladder pressure as a part of a cystometrogram (CMG) in a urodynamic test (ie, pressure-flow study). SHAPE is based on the principle that subharmonic emissions from ultrasound contrast microbubbles (MBs) decrease linearly with an increase in ambient pressure. We hypothesize that, using the SHAPE technique, we can measure voiding bladder pressure catheter-free. This is of importance because the CMG catheter, due to its space-occupying property and non-physiological effects, can undermine the reliability of the test during voiding and cause misdiagnosis. In this study, we tested this hypothesis and optimized the protocol in a controlled benchtop environment.A bladder phantom was designed and built, capable of simulating clinically relevant bladder pressures. Laboratory-made lipid-shelled MBs (similar in composition to the commercial agent, DEFINITY) was diluted in 0.9% normal saline and infused into the bladder phantom using the CMG infusion system. A typical simulated CMG consists of 1 filling and 4 post-filling events. During CMG events, the bladder phantom is pressurized multiple times at different clinically relevant levels (small, medium, and large) to simulate bladder pressures. Simultaneous with pressurization, MB subharmonic signal was acquired. For each event, the change in MB subharmonic amplitude was correlated linearly with the change in bladder phantom pressure, and the SHAPE conversion factor (slope of the linear fit) was determined. In doing so, a specific signal processing technique (based on a small temporal window) was used to account for time-decay of MB subharmonic signal during a simulated CMG.A strong inverse linear relationship was found to exist between SHAPE and bladder phantom pressures for each of the CMG filling and post-filling events (r2> 0.9, root mean square error
Yin Q., Andò E., Viggiani G., Sun W.
2022-06-16 citations by CoLab: 12 Abstract  
This paper presents a combined experimental-modeling effort to interpret the coupled thermo-hydro-mechanical behaviors of the freezing soil, where an unconfined, fully saturated clay is frozen due to a temperature gradient. By leveraging the rich experimental data from the microCT images and the measurements taken during the freezing process, we examine not only how the growth of ice induces volumetric changes of the soil in the fully saturated specimen but also how the presence and propagation of the freezing fringe front may evolve the anisotropy of the effective media of the soil–ice mixture that cannot be otherwise captured phenomenologically in the isotropic saturation-dependent critical state models for plasticity. The resultant model is not only helpful for providing a qualitative description of how freezing affects the volumetric responses of the clayey material, but also provide a mean to generate more precise predictions for the heaving due to the freezing of the ground.
Dietrich C., Cui X., Li K., Yi A., Wang B., Wei Q., Wu G.
Endoscopic Ultrasound scimago Q1 wos Q1
2022-05-02 citations by CoLab: 40
Lamas C.P., Vega C., Noya E.G.
Journal of Chemical Physics scimago Q1 wos Q1
2022-04-04 citations by CoLab: 41 PDF Abstract  
Salt aqueous solutions are relevant in many fields, ranging from biological systems to seawater. Thus, the availability of a force-field that is able to reproduce the thermodynamic and dynamic behavior of salt aqueous solutions would be of great interest. Unfortunately, this has been proven challenging, and most of the existing force-fields fail to reproduce much of their behavior. In particular, the diffusion of water or the salt solubility are often not well reproduced by most of the existing force-fields. Recently, the Madrid-2019 model was proposed, and it was shown that this force-field, which uses the TIP4P/2005 model for water and non-integer charges for the ions, provides a good description of a large number of properties, including the solution densities, viscosities, and the diffusion of water. In this work, we assess the performance of this force-field on the evaluation of the freezing point depression. Although the freezing point depression is a colligative property that at low salt concentrations depends solely on properties of pure water, a good model for the electrolytes is needed to accurately predict the freezing point depression at moderate and high salt concentrations. The coexistence line between ice and several salt aqueous solutions (NaCl, KCl, LiCl, MgCl2, and Li2SO4) up to the eutectic point is estimated from direct coexistence molecular dynamics simulations. Our results show that this force-field reproduces fairly well the experimentally measured freezing point depression with respect to pure water freezing for all the salts and at all the compositions considered.
Bakaric M., Miloro P., Javaherian A., Cox B.T., Treeby B.E., Brown M.D.
2021-10-01 citations by CoLab: 28 Abstract  
Over the past decade, the range of applications in biomedical ultrasound exploiting 3D printing has rapidly expanded. For wavefront shaping specifically, 3D printing has enabled a diverse range of new, low-cost approaches for controlling acoustic fields. These methods rely on accurate knowledge of the bulk acoustic properties of the materials; however, to date, robust knowledge of these parameters is lacking for many materials that are commonly used. In this work, the acoustic properties of eight 3D-printed photopolymer materials were characterised over a frequency range from 1 to 3.5 MHz. The properties measured were the frequency-dependent phase velocity and attenuation, group velocity, signal velocity, and mass density. The materials were fabricated using two separate techniques [PolyJet and stereolithograph (SLA)], and included Agilus30, FLXA9960, FLXA9995, Formlabs Clear, RGDA8625, RGDA8630, VeroClear, and VeroWhite. The range of measured density values across all eight materials was 1120–1180 kg [Formula: see text] m−3, while the sound speed values were between 2020 to 2630 m [Formula: see text] s−1, and attenuation values typically in the range 3–9 dB [Formula: see text] [Formula: see text] cm−1.
Chang X., Liu W., Zuo G., Dou Y., Li Y.
Acta Oceanologica Sinica scimago Q3 wos Q3
2021-10-01 citations by CoLab: 11 Abstract  
Arctic sea ice area and thickness have declined dramatically during the recent decades. Sea ice physical and mechanical properties become increasingly important. Traditional methods of studying ice mechanical parameters such as ice-coring cannot realize field test and long-term observation. A new principle of measuring mechanical properties of ice using ultrasonic was studied and an ultrasonic system was proposed to achieve automatic observation of ice mechanical parameters (Young’s modulus, shear modulus and bulk modulus). The ultrasonic system can measure the ultrasonic velocity through ice at different temperature, salinity and density of ice. When ambient temperature decreased from 0°C to −30°C, ultrasonic velocity and mechanical properties of ice increased, and vice versa. The shear modulus of the freshwater ice and sea ice varied from 2.098 GPa to 2.48 GPa and 2.927 GPa to 4.374 GPa, respectively. The bulk modulus of freshwater ice remained between 3.074 GPa and 4.566 GPa and the sea ice bulk modulus varied from 1.211 GPa to 3.089 GPa. The freshwater ice Young’s modulus kept between 5.156 GPa and 6.264 GPa and sea ice Young’s modulus varied from 3.793 GPa to 7.492 GPa. The results of ultrasonic measurement are consistent with previous studies and there is a consistent trend of mechanical modulus of ice between the process of ice temperature rising and falling. Finally, this ultrasonic method and the ultrasonic system will help to achieve the long-term observation of ice mechanical properties of ice and improve accuracy of sea ice models.
Hellmann S., Grab M., Kerch J., Löwe H., Bauder A., Weikusat I., Maurer H.
Cryosphere scimago Q1 wos Q1 Open Access
2021-07-28 citations by CoLab: 11 Abstract  
Abstract. The crystal orientation fabric (COF) in ice cores provides detailed information, such as grain size and distribution and the orientation of the crystals in relation to the large-scale glacier flow. These data are relevant for a profound understanding of the dynamics and deformation history of glaciers and ice sheets. The intrinsic, mechanical anisotropy of the ice crystals causes an anisotropy of the polycrystalline ice of glaciers and affects the velocity of acoustic waves propagating through the ice. Here, we employ such acoustic waves to obtain the seismic anisotropy of ice core samples and compare the results with calculated acoustic velocities derived from COF analyses. These samples originate from an ice core from Rhonegletscher (Rhone Glacier), a temperate glacier in the Swiss Alps. Point-contact transducers transmit ultrasonic P waves with a dominant frequency of 1 MHz into the ice core samples and measure variations in the travel times of these waves for a set of azimuthal angles. In addition, the elasticity tensor is obtained from laboratory-measured COF, and we calculate the associated seismic velocities. We compare these COF-derived velocity profiles with the measured ultrasonic profiles. Especially in the presence of large ice grains, these two methods show significantly different velocities since the ultrasonic measurements examine a limited volume of the ice core, whereas the COF-derived velocities are integrated over larger parts of the core. This discrepancy between the ultrasonic and COF-derived profiles decreases with an increasing number of grains that are available within the sampling volume, and both methods provide consistent results in the presence of a similar amount of grains. We also explore the limitations of ultrasonic measurements and provide suggestions for improving their results. These ultrasonic measurements could be employed continuously along the ice cores. They are suitable to support the COF analyses by bridging the gaps between discrete measurements since these ultrasonic measurements can be acquired within minutes and do not require an extensive preparation of ice samples when using point-contact transducers.
Kazys R., Vaskeliene V.
Sensors scimago Q1 wos Q2 Open Access
2021-05-05 citations by CoLab: 77 PDF Abstract  
There are many fields such as online monitoring of manufacturing processes, non-destructive testing in nuclear plants, or corrosion rate monitoring techniques of steel pipes in which measurements must be performed at elevated temperatures. For that high temperature ultrasonic transducers are necessary. In the presented paper, a literature review on the main types of such transducers, piezoelectric materials, backings, and the bonding techniques of transducers elements suitable for high temperatures, is presented. In this review, the main focus is on ultrasonic transducers with piezoelectric elements suitable for operation at temperatures higher than of the most commercially available transducers, i.e., 150 °C. The main types of the ultrasonic transducers that are discussed are the transducers with thin protectors, which may serve as matching layers, transducers with high temperature delay lines, wedges, and waveguide type transducers. The piezoelectric materials suitable for high temperature applications such as aluminum nitride, lithium niobate, gallium orthophosphate, bismuth titanate, oxyborate crystals, lead metaniobate, and other piezoceramics are analyzed. Bonding techniques used for joining of the transducer elements such as joining with glue, soldering, brazing, dry contact, and diffusion bonding are discussed. Special attention is paid to efficient diffusion and thermo-sonic diffusion bonding techniques. Various types of backings necessary for improving a bandwidth and to obtain a short pulse response are described.
Olmo A., Barroso P., Barroso F., Risco R.
2021-03-01 citations by CoLab: 12 Abstract  
High-intensity focused ultrasound (HIFU) has been used in different medical applications in the last years. In this work, we present for the first time the use of HIFU in the field of cryopreservation, the preservation of biological material at low temperatures. An HIFU system has been designed with the objective of achieving a fast and uniform rewarming in organs, key to overcome the critical problem of devitrification. The finite-element simulations have been carried out using COMSOL Multiphysics software. An array of 26 ultrasonic transducers was simulated, achieving an HIFU focal area in the order of magnitude of a model organ (ovary). A parametric study of the warming rate and temperature gradients, as a function of the frequency and power of ultrasonic waves, was performed. An optimal value for these parameters was found. The results validate the appropriateness of the technique, which is of utmost importance for the future creation of cryopreserved organ banks.
Anisimkin V., Kolesov V., Kuznetsova A., Shamsutdinova E., Kuznetsova I.
Sensors scimago Q1 wos Q2 Open Access
2021-01-29 citations by CoLab: 15 PDF Abstract  
It is shown that, in spite of the wave radiation into the adjacent liquid, a large group of Lamb waves are able to propagate along piezoelectric plates (quartz, LiNbO3, LiTaO3) coated with a liquid layer (distilled water H2O). When the layer freezes, most of the group’s waves increase their losses, essentially forming an acoustic response towards water-to-ice transformation. Partial contributions to the responses originating from wave propagation, electro-mechanical transduction, and wave scattering were estimated and compared with the coupling constants, and the vertical displacements of the waves were calculated numerically at the water–plate and ice–plate interfaces. The maximum values of the responses (20–30 dB at 10–100 MHz) are attributed to the total water-to-ice transformation. Time variations in the responses at intermediate temperatures were interpreted in terms of a two-phase system containing both water and ice simultaneously. The results of the paper may turn out to be useful for some applications where the control of ice formation is an important problem (aircraft wings, ship bodies, car roads, etc.).
Palmeri M.L., Milkowski A., Barr R., Carson P., Couade M., Chen J., Chen S., Dhyani M., Ehman R., Garra B., Gee A., Guenette G., Hah Z., Lynch T., Macdonald M., et. al.
2021-01-07 citations by CoLab: 33 Abstract  
OBJECTIVES To quantify the bias of shear wave speed (SWS) measurements between different commercial ultrasonic shear elasticity systems and a magnetic resonance elastography (MRE) system in elastic and viscoelastic phantoms. METHODS Two elastic phantoms, representing healthy through fibrotic liver, were measured with 5 different ultrasound platforms, and 3 viscoelastic phantoms, representing healthy through fibrotic liver tissue, were measured with 12 different ultrasound platforms. Measurements were performed with different systems at different sites, at 3 focal depths, and with different appraisers. The SWS bias across the systems was quantified as a function of the system, site, focal depth, and appraiser. A single MRE research system was also used to characterize these phantoms using discrete frequencies from 60 to 500 Hz. RESULTS The SWS from different systems had mean difference 95% confidence intervals of ±0.145 m/s (±9.6%) across both elastic phantoms and ± 0.340 m/s (±15.3%) across the viscoelastic phantoms. The focal depth and appraiser were less significant sources of SWS variability than the system and site. Magnetic resonance elastography best matched the ultrasonic SWS in the viscoelastic phantoms using a 140 Hz source but had a - 0.27 ± 0.027-m/s (-12.2% ± 1.2%) bias when using the clinically implemented 60-Hz vibration source. CONCLUSIONS Shear wave speed reconstruction across different manufacturer systems is more consistent in elastic than viscoelastic phantoms, with a mean difference bias of < ±10% in all cases. Magnetic resonance elastographic measurements in the elastic and viscoelastic phantoms best match the ultrasound systems with a 140-Hz excitation but have a significant negative bias operating at 60 Hz. This study establishes a foundation for meaningful comparison of SWS measurements made with different platforms.
Ono K.
Applied Sciences (Switzerland) scimago Q2 wos Q2 Open Access
2020-03-25 citations by CoLab: 83 PDF Abstract  
In this paper, ultrasonic attenuation of engineering materials is evaluated comprehensively, covering metals, ceramics, polymers, fiber-reinforced composites, wood, and rocks. After verifying two reliable experimental methods, 336 measurements are conducted and their results are tabulated. Attenuation behavior is determined over broadband spectra, extending up to 15 MHz in low attenuating materials. The attenuation spectra are characterized in combination with four power law terms, with many showing linear frequency dependence, with or without Rayleigh scattering. Dislocation damping effects are re-evaluated and a new mechanism is proposed to explain some of the linear frequency dependencies. Additionally, quadratic and cubic dependencies due to Datta–Kinra scattering and Biwa scattering, respectively, are used for some materials to construct model relations. From many test results, some previously hidden behaviors emerged upon data evaluation. Effects of cold working, tempering, and annealing are complex and sometimes contradictory. Comparison to available literature was attempted for some, but most often prior data were unavailable. This collection of new attenuation data will be of value in materials selection and in designing structural health monitoring and non-destructive inspection protocols.
Rabbath C.A., Corriveau D.
Defence Technology scimago Q1 wos Q1 Open Access
2019-10-01 citations by CoLab: 58 Abstract  
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions. An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics. The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions: they are continuous, differentiable at least once, and have a relatively low degree. The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools, and then compares Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), cubic splines, and piecewise linear functions, and their variant, as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile. A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics, and its evaluation against a set of criteria. Finally, the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
Holm S., Bergli J.
2025-02-01 citations by CoLab: 0 Abstract  
Absorption of elastic waves in complex media is commonly found to increase linearly with frequency, for both longitudinal and shear waves. This ubiquitous property is observed in media such as rocks, unconsolidated sediments, and human tissue. Absorption is due to relaxation processes at the level of atomic scales and up to the sub-micron scale of biological materials. The effect of these processes is usually expressed as an integral over relaxation frequencies or relaxation times. Here, this paper argues that these processes are thermally activated. Unusually for ultrasonics and seismics, the expression for absorption from the frequency or time domains can therefore be transformed to an integral over an activation energy landscape weighted by an energy distribution. The universal power-law property surprisingly corresponds to a flat activation energy landscape. This is the solution that maximizes entropy or randomness. Therefore, the linearly increasing absorption corresponds to the energy landscape with the fewest possible constraints.

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?