Optimization of Resource Allocation for V2X Security Communication based on Multi-Agent Reinforcement Learning
Baofeng Ji
1
,
Bingyi Dong
1
,
Da Li
2
,
Yi Wang
3
,
Lvxi Yang
4
,
Luxi Yang
5
,
Charalampos Tsimenidis
6
,
C. Tsimenidis
7
,
Varun G. Menon
8
8
Department of Computer Science and Engineering SCMS School of Engineering and Technology, Kochi, India
|
Тип публикации: Journal Article
Дата публикации: 2025-02-01
scimago Q1
wos Q1
БС1
SJR: 2.156
CiteScore: 12.1
Impact factor: 7.1
ISSN: 00189545, 19399359
Electrical and Electronic Engineering
Computer Networks and Communications
Automotive Engineering
Aerospace Engineering
Краткое описание
In order to address the data security and communication efficiency of vehicles during high-speed mobile communication, this paper investigates the problem of secure in-vehicle communication resource allocation based on slow-variable large-scale fading channel information, to meet the quality of service requirements of vehicular communication, i.e., to ensure the reliability of V2V communication and the time delay while maximizing the transmission rate of the cellular link. And an eavesdropping model is introduced to ensure the secure delivery of link information. Considering that the high mobility of vehicles causes rapid channel changes, we model the problem as a Markov decision process and propose a resource allocation optimization framework based on the Multi-Agent Reinforcement Learning Algorithm (MARL-DDQN), in which a large-scale neural network model is built to train vehicular to learn the optimal resource allocation strategy for optimal communication performance and security performance. Simulation results show that the load successful delivery rate and confidentiality performance of the vehicular communication network are effectively improved compared to the baseline and MADDPG strategies while ensuring link security. This study provides useful references and practical value for the optimization of secure communication resource allocation in vehicular networking.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Optical and Quantum Electronics
1 публикация, 7.14%
|
|
|
ACM Computing Surveys
1 публикация, 7.14%
|
|
|
IEEE Transactions on Network and Service Management
1 публикация, 7.14%
|
|
|
Nonlinear Dynamics
1 публикация, 7.14%
|
|
|
Applied Sciences (Switzerland)
1 публикация, 7.14%
|
|
|
IEEE Transactions on AgriFood Electronics
1 публикация, 7.14%
|
|
|
IEEE Transactions on Wireless Communications
1 публикация, 7.14%
|
|
|
Sensors
1 публикация, 7.14%
|
|
|
IEEE Transactions on Mobile Computing
1 публикация, 7.14%
|
|
|
Mathematics
1 публикация, 7.14%
|
|
|
IEEE Transactions on Consumer Electronics
1 публикация, 7.14%
|
|
|
1
|
Издатели
|
1
2
3
4
5
6
7
8
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
8 публикаций, 57.14%
|
|
|
MDPI
3 публикации, 21.43%
|
|
|
Springer Nature
2 публикации, 14.29%
|
|
|
Association for Computing Machinery (ACM)
1 публикация, 7.14%
|
|
|
1
2
3
4
5
6
7
8
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
14
Всего цитирований:
14
Цитирований c 2024:
12
(85.71%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Ji B. et al. Optimization of Resource Allocation for V2X Security Communication based on Multi-Agent Reinforcement Learning // IEEE Transactions on Vehicular Technology. 2025. Vol. 74. No. 2. pp. 1849-1861.
ГОСТ со всеми авторами (до 50)
Скопировать
Ji B., Dong B., Li D., Wang Y., Yang L., Yang L., Tsimenidis C., Tsimenidis C., Menon V. G. Optimization of Resource Allocation for V2X Security Communication based on Multi-Agent Reinforcement Learning // IEEE Transactions on Vehicular Technology. 2025. Vol. 74. No. 2. pp. 1849-1861.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/tvt.2023.3340424
UR - https://ieeexplore.ieee.org/document/10347529/
TI - Optimization of Resource Allocation for V2X Security Communication based on Multi-Agent Reinforcement Learning
T2 - IEEE Transactions on Vehicular Technology
AU - Ji, Baofeng
AU - Dong, Bingyi
AU - Li, Da
AU - Wang, Yi
AU - Yang, Lvxi
AU - Yang, Luxi
AU - Tsimenidis, Charalampos
AU - Tsimenidis, C.
AU - Menon, Varun G.
PY - 2025
DA - 2025/02/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1849-1861
IS - 2
VL - 74
SN - 0018-9545
SN - 1939-9359
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Ji,
author = {Baofeng Ji and Bingyi Dong and Da Li and Yi Wang and Lvxi Yang and Luxi Yang and Charalampos Tsimenidis and C. Tsimenidis and Varun G. Menon},
title = {Optimization of Resource Allocation for V2X Security Communication based on Multi-Agent Reinforcement Learning},
journal = {IEEE Transactions on Vehicular Technology},
year = {2025},
volume = {74},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {feb},
url = {https://ieeexplore.ieee.org/document/10347529/},
number = {2},
pages = {1849--1861},
doi = {10.1109/tvt.2023.3340424}
}
Цитировать
MLA
Скопировать
Ji, Baofeng, et al. “Optimization of Resource Allocation for V2X Security Communication based on Multi-Agent Reinforcement Learning.” IEEE Transactions on Vehicular Technology, vol. 74, no. 2, Feb. 2025, pp. 1849-1861. https://ieeexplore.ieee.org/document/10347529/.