Open Access
DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation
Тип публикации: Journal Article
Дата публикации: 2021-09-09
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
General Materials Science
General Engineering
General Computer Science
Краткое описание
Crack detection and measurement are essential tasks for maintaining and ensuring safety. Accurate crack detection is very challenging because of non-uniform intensity, poor continuity, and irregular patterns of cracks. The complexity of the background and variability in the data acquisition process also complicate the problem. Many approaches to crack detection have been proposed, but the accuracy of the detection leaves much to be desired. The aim of this study is to develop a practical crack detection method for real-time maintenance. We focus on a deep end-to-end and pixel-wise crack segmentation. We propose a lightweight U-Net-based network architecture with emphasis on the learning process. In order to verify the effectiveness of the proposed method, we conduct tests on publicly available pavement crack datasets and compare our model with state-of-the-art crack detection methods. Extensive experiments show that the proposed method effectively detects cracks in a complex environment, and achieves superior performance. The code and proposed model can be found in https://github.com/dvalex/daunet.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
IEEE Transactions on Intelligent Transportation Systems
3 публикации, 7.32%
|
|
|
Engineering Applications of Artificial Intelligence
3 публикации, 7.32%
|
|
|
Journal of Infrastructure Systems
2 публикации, 4.88%
|
|
|
Remote Sensing
2 публикации, 4.88%
|
|
|
International Journal of Applied Earth Observation and Geoinformation
2 публикации, 4.88%
|
|
|
Lecture Notes in Computer Science
2 публикации, 4.88%
|
|
|
IEEE Access
2 публикации, 4.88%
|
|
|
Transportation Research Record
2 публикации, 4.88%
|
|
|
Construction and Building Materials
1 публикация, 2.44%
|
|
|
Sensors
1 публикация, 2.44%
|
|
|
Communications in Computer and Information Science
1 публикация, 2.44%
|
|
|
Bulletin of Engineering Geology and the Environment
1 публикация, 2.44%
|
|
|
Applied Sciences (Switzerland)
1 публикация, 2.44%
|
|
|
Signal, Image and Video Processing
1 публикация, 2.44%
|
|
|
Digital Signal Processing: A Review Journal
1 публикация, 2.44%
|
|
|
Journal of Infrastructure Preservation and Resilience
1 публикация, 2.44%
|
|
|
Expert Systems with Applications
1 публикация, 2.44%
|
|
|
IEEJ Transactions on Electronics, Information and Systems
1 публикация, 2.44%
|
|
|
Results in Engineering
1 публикация, 2.44%
|
|
|
Automation in Construction
1 публикация, 2.44%
|
|
|
Journal of Computing in Civil Engineering
1 публикация, 2.44%
|
|
|
Procedia Computer Science
1 публикация, 2.44%
|
|
|
Structures
1 публикация, 2.44%
|
|
|
Engineering Research Express
1 публикация, 2.44%
|
|
|
Journal of Intelligent and Fuzzy Systems
1 публикация, 2.44%
|
|
|
IEEE Transactions on Automation Science and Engineering
1 публикация, 2.44%
|
|
|
International Journal of Machine Learning and Cybernetics
1 публикация, 2.44%
|
|
|
IEEE Transactions on Intelligent Vehicles
1 публикация, 2.44%
|
|
|
1
2
3
|
Издатели
|
2
4
6
8
10
12
|
|
|
Elsevier
12 публикаций, 29.27%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
10 публикаций, 24.39%
|
|
|
Springer Nature
7 публикаций, 17.07%
|
|
|
MDPI
4 публикации, 9.76%
|
|
|
American Society of Civil Engineers (ASCE)
3 публикации, 7.32%
|
|
|
SAGE
3 публикации, 7.32%
|
|
|
Institute of Electrical Engineers of Japan (IEE Japan)
1 публикация, 2.44%
|
|
|
IOP Publishing
1 публикация, 2.44%
|
|
|
2
4
6
8
10
12
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
41
Всего цитирований:
41
Цитирований c 2024:
27
(65%)
Самый цитирующий журнал
Цитирований в журнале:
3
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Polovnikov V. et al. DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation // IEEE Access. 2021. Vol. 9. pp. 125714-125723.
ГОСТ со всеми авторами (до 50)
Скопировать
Polovnikov V., Alekseev D., Vinogradov I., Lashkia G. V. DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation // IEEE Access. 2021. Vol. 9. pp. 125714-125723.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/ACCESS.2021.3111223
UR - https://doi.org/10.1109/ACCESS.2021.3111223
TI - DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation
T2 - IEEE Access
AU - Polovnikov, Vladimir
AU - Alekseev, Dmitriy
AU - Vinogradov, Ivan
AU - Lashkia, George V
PY - 2021
DA - 2021/09/09
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 125714-125723
VL - 9
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Polovnikov,
author = {Vladimir Polovnikov and Dmitriy Alekseev and Ivan Vinogradov and George V Lashkia},
title = {DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation},
journal = {IEEE Access},
year = {2021},
volume = {9},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {sep},
url = {https://doi.org/10.1109/ACCESS.2021.3111223},
pages = {125714--125723},
doi = {10.1109/ACCESS.2021.3111223}
}
Профили