Real-time vision-based depth reconstruction with NVIDIA jetson

Тип публикацииProceedings Article
Дата публикации2019-09-01
Краткое описание
Vision-based depth reconstruction is a challenging problem extensively studied in computer vision but still lacking universal solution. Reconstructing depth from single image is particularly valuable to mobile robotics as it can be embedded to the modern vision-based simultaneous localization and mapping (vSLAM) methods providing them with the metric information needed to construct accurate maps in real scale. Typically, depth reconstruction is done nowadays via fully-convolutional neural networks (FCNNs). In this work we experiment with several FCNN architectures and introduce a few enhancements aimed at increasing both the effectiveness and the efficiency of the inference. We experimentally determine the solution that provides the best performance/accuracy tradeoff and is able to run on NVidia Jetson with the framerates exceeding 16FPS for 320 × 240 input. We also evaluate the suggested models by conducting monocular vSLAM of unknown indoor environment on NVidia Jetson TX2 in real-time. Open-source implementation of the models and the inference node for Robot Operating System (ROS) are available at https://github.com/CnnDepth/tx2_fcnn_node.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Lecture Notes in Computer Science
2 публикации, 10%
Studies in Computational Intelligence
2 публикации, 10%
IEEE Transactions on Computers
1 публикация, 5%
SoftwareX
1 публикация, 5%
Applied Sciences (Switzerland)
1 публикация, 5%
Sensors
1 публикация, 5%
IEEE Open Journal of Circuits and Systems
1 публикация, 5%
Aquacultural Engineering
1 публикация, 5%
WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS
1 публикация, 5%
Energies
1 публикация, 5%
Artificial Intelligence Review
1 публикация, 5%
1
2

Издатели

1
2
3
4
5
6
7
8
Institute of Electrical and Electronics Engineers (IEEE)
8 публикаций, 40%
Springer Nature
5 публикаций, 25%
MDPI
3 публикации, 15%
Elsevier
2 публикации, 10%
World Scientific and Engineering Academy and Society (WSEAS)
1 публикация, 5%
SPIE-Intl Soc Optical Eng
1 публикация, 5%
1
2
3
4
5
6
7
8
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
20
Поделиться
Цитировать
ГОСТ |
Цитировать
Bokovoy A., Muravyev K., Yakovlev K. Real-time vision-based depth reconstruction with NVIDIA jetson // 2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings. 2019.
ГОСТ со всеми авторами (до 50) Скопировать
Bokovoy A., Muravyev K., Yakovlev K. Real-time vision-based depth reconstruction with NVIDIA jetson // 2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings. 2019.
RIS |
Цитировать
TY - CPAPER
DO - 10.1109/ECMR.2019.8870936
UR - https://doi.org/10.1109/ECMR.2019.8870936
TI - Real-time vision-based depth reconstruction with NVIDIA jetson
T2 - 2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings
AU - Bokovoy, Andrey
AU - Muravyev, Kirill
AU - Yakovlev, Konstantin
PY - 2019
DA - 2019/09/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@inproceedings{2019_Bokovoy,
author = {Andrey Bokovoy and Kirill Muravyev and Konstantin Yakovlev},
title = {Real-time vision-based depth reconstruction with NVIDIA jetson},
year = {2019},
month = {sep},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)}
}