страницы 243-248

Anti-fraud system on the basis of data mining technologies

Тип публикацииProceedings Article
Дата публикации2017-12-01
Краткое описание
The article is devoted to the issues of increasing the efficiency of transaction monitoring systems (TMS). The main types of TMS with their advantages and disadvantages are considered, and various algorithms of data mining used in this field were also considered. On the basis of the analysis of systems and algorithms, three classifiers were chosen: a multilayer perceptron (MLP), a classifier based on a random forest and a method of support vectors. The selected classifiers were tested on full-scale data. The best indicators were noted for the classifier on the basis of a random forest. The structure of the system for collecting and analyzing information about the user environment (UE) has been developed, which makes it possible to accumulate data about the UE, to mark use cases in manual and automatic modes and to build a database of images for training neural network classifiers. An algorithm for analyzing the information collected about the UE based on cluster analysis is developed.
Найдено 
Найдено 

Топ-30

Журналы

1
Lecture Notes in Computer Science
1 публикация, 16.67%
Journal of Money Laundering Control
1 публикация, 16.67%
1

Издатели

1
2
3
4
Institute of Electrical and Electronics Engineers (IEEE)
4 публикации, 66.67%
Springer Nature
1 публикация, 16.67%
Emerald
1 публикация, 16.67%
1
2
3
4
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Поделиться
Цитировать
ГОСТ |
Цитировать
Sapozhnikova M. U. et al. Anti-fraud system on the basis of data mining technologies // 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017. 2017. pp. 243-248.
ГОСТ со всеми авторами (до 50) Скопировать
Sapozhnikova M. U., Nikonov A., Vulfin A. M., Gayanova M. M., Mironov K., Kurennov D. V. Anti-fraud system on the basis of data mining technologies // 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017. 2017. pp. 243-248.
RIS |
Цитировать
TY - CPAPER
DO - 10.1109/ISSPIT.2017.8388649
UR - https://doi.org/10.1109/ISSPIT.2017.8388649
TI - Anti-fraud system on the basis of data mining technologies
T2 - 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017
AU - Sapozhnikova, M U
AU - Nikonov, A.V.
AU - Vulfin, A M
AU - Gayanova, M M
AU - Mironov, Konstantin
AU - Kurennov, D V
PY - 2017
DA - 2017/12/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 243-248
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@inproceedings{2017_Sapozhnikova,
author = {M U Sapozhnikova and A.V. Nikonov and A M Vulfin and M M Gayanova and Konstantin Mironov and D V Kurennov},
title = {Anti-fraud system on the basis of data mining technologies},
year = {2017},
pages = {243--248},
month = {dec},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)}
}