Data Augmentation of Thyroid Ultrasound Images Using Generative Adversarial Network

Тип публикацииProceedings Article
Дата публикации2021-09-11
Краткое описание
Ultrasound (US) has been investigated as a common method of computer aided diagnosis because of its low-cost, harmless and real-time scanning. Also the rapid development of deep learning segmentation and classification models alleviates the influence of low signal-to-noise ratio and artifacts of ultrasonic imaging. However, due to the privacy issues of medical data, it is not easy to acquire sufficient data for deep learning model training. In recent years, generative adversarial networks (GANs) are widely used in data augmentation. However, GANs suffer from the problem of mode collapse in the training process then generate images with a limited variety. On the other hand, variational auto-encoder (VAE) is free from mode collapse but it generates blurred images. In this work, we study an auto-encoding generative adversarial network combining the advantages of GAN and VAE to generate realistic images for medical thyroid ultrasound image augmentation. Experiment results show that the generated images can simulate realistic ultrasound features and thyroid tissues for augmentation and help training a U-Net model to get better segmentation results.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Lecture Notes in Computer Science
2 публикации, 14.29%
Journal of Imaging
1 публикация, 7.14%
BioMedInformatics
1 публикация, 7.14%
IEEE Access
1 публикация, 7.14%
Textile Reseach Journal
1 публикация, 7.14%
Lecture Notes in Electrical Engineering
1 публикация, 7.14%
Neurocomputing
1 публикация, 7.14%
Sensors
1 публикация, 7.14%
Engineering Reports
1 публикация, 7.14%
1
2

Издатели

1
2
3
4
5
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 35.71%
MDPI
3 публикации, 21.43%
Springer Nature
3 публикации, 21.43%
SAGE
1 публикация, 7.14%
Elsevier
1 публикация, 7.14%
Wiley
1 публикация, 7.14%
1
2
3
4
5
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
14
Поделиться