Open Access
Urban Traffic Flow Estimation System Based on Gated Recurrent Unit Deep Learning Methodology for Internet of Vehicles
Abdul Hussain Ali Hussain
1
,
Montadar Abas Taher
2
,
Omar Abdulkareem Mahmood
2
,
Yousif I Hammadi
3
,
Reem Alkanhel
4
,
Ammar Muthanna
5
,
Тип публикации: Journal Article
Дата публикации: 2023-04-26
scimago Q1
wos Q2
БС1
SJR: 0.849
CiteScore: 9.0
Impact factor: 3.6
ISSN: 21693536
General Materials Science
Electrical and Electronic Engineering
General Engineering
General Computer Science
Краткое описание
Congestion in the world's traffic systems is a major issue that has far-reaching repercussions, including wasted time and money due to longer commutes and more frequent stops for gas. Modern scholarly challenges arise alongside chances to greatly enhance traffic prediction made possible by the integration of modern technologies into transportation systems. Various techniques have been utilized for the purpose of traffic flow prediction, including statistical, machine learning, and deep neural networks. In this paper, deep neural network architecture based on long short term memory (LSTM), bi-directional version, and gated recurrent units (GRUs) layers have been structured to build the deep neural network, in order to predict the performance of the traffic flow in four distinct junctions which has a great impact on the Internet of vehicles' applications. The structure comprised of sixteen-layers, five of them are GRU-layers and one bi-directional LSTM-layer. The dataset employed in this work involved four congested junctions. The dataset extended from the first of November 2016 to 30th of June 2017. Cleaning and preprocessing operations were achieved on the dataset before feeding it to the designed deep neural network of this paper. Results show that the suggested method produced a comparable performance with respect to state-of-the art approaches.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
IEEE Access
4 публикации, 26.67%
|
|
|
Journal of Optics (India)
2 публикации, 13.33%
|
|
|
Journal of Supercomputing
1 публикация, 6.67%
|
|
|
Applied Sciences (Switzerland)
1 публикация, 6.67%
|
|
|
International Journal of Information Technology
1 публикация, 6.67%
|
|
|
Frontiers in Artificial Intelligence
1 публикация, 6.67%
|
|
|
Communications in Computer and Information Science
1 публикация, 6.67%
|
|
|
Vehicles
1 публикация, 6.67%
|
|
|
Computers and Industrial Engineering
1 публикация, 6.67%
|
|
|
Scientific Reports
1 публикация, 6.67%
|
|
|
1
2
3
4
|
Издатели
|
1
2
3
4
5
6
|
|
|
Springer Nature
6 публикаций, 40%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 33.33%
|
|
|
MDPI
2 публикации, 13.33%
|
|
|
Frontiers Media S.A.
1 публикация, 6.67%
|
|
|
Elsevier
1 публикация, 6.67%
|
|
|
1
2
3
4
5
6
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
15
Всего цитирований:
15
Цитирований c 2024:
13
(86.67%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Hussain A. H. A. et al. Urban Traffic Flow Estimation System Based on Gated Recurrent Unit Deep Learning Methodology for Internet of Vehicles // IEEE Access. 2023. Vol. 11. pp. 58516-58531.
ГОСТ со всеми авторами (до 50)
Скопировать
Hussain A. H. A., Taher M. A., Mahmood O. A., Hammadi Y. I., Alkanhel R., Muthanna A., Koucheryavy A. Urban Traffic Flow Estimation System Based on Gated Recurrent Unit Deep Learning Methodology for Internet of Vehicles // IEEE Access. 2023. Vol. 11. pp. 58516-58531.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/access.2023.3270395
UR - https://ieeexplore.ieee.org/document/10108955/
TI - Urban Traffic Flow Estimation System Based on Gated Recurrent Unit Deep Learning Methodology for Internet of Vehicles
T2 - IEEE Access
AU - Hussain, Abdul Hussain Ali
AU - Taher, Montadar Abas
AU - Mahmood, Omar Abdulkareem
AU - Hammadi, Yousif I
AU - Alkanhel, Reem
AU - Muthanna, Ammar
AU - Koucheryavy, Andrey
PY - 2023
DA - 2023/04/26
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 58516-58531
VL - 11
SN - 2169-3536
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Hussain,
author = {Abdul Hussain Ali Hussain and Montadar Abas Taher and Omar Abdulkareem Mahmood and Yousif I Hammadi and Reem Alkanhel and Ammar Muthanna and Andrey Koucheryavy},
title = {Urban Traffic Flow Estimation System Based on Gated Recurrent Unit Deep Learning Methodology for Internet of Vehicles},
journal = {IEEE Access},
year = {2023},
volume = {11},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {apr},
url = {https://ieeexplore.ieee.org/document/10108955/},
pages = {58516--58531},
doi = {10.1109/access.2023.3270395}
}
Лаборатории