Biometrics, volume 79, issue 4

Stabilized direct learning for efficient estimation of individualized treatment rules

Kushal S Shah 1
Haoda Fu 2
M R Kosorok 1
Publication typeJournal Article
Publication date2023-01-23
Journal: Biometrics
scimago Q1
SJR1.480
CiteScore2.7
Impact factor1.4
ISSN0006341X, 15410420
PubMed ID:  36585916
General Biochemistry, Genetics and Molecular Biology
General Medicine
Statistics and Probability
General Agricultural and Biological Sciences
General Immunology and Microbiology
Applied Mathematics
Abstract
In recent years, the field of precision medicine has seen many advancements. Significant focus has been placed on creating algorithms to estimate individualized treatment rules (ITRs), which map from patient covariates to the space of available treatments with the goal of maximizing patient outcome. Direct Learning (D-Learning) is a recent one-step method which estimates the ITR by directly modeling the treatment-covariate interaction. However, when the variance of the outcome is heterogeneous with respect to treatment and covariates, D-Learning does not leverage this structure. Stabilized Direct Learning (SD-Learning), proposed in this paper, utilizes potential heteroscedasticity in the error term through a residual reweighting which models the residual variance via flexible machine learning algorithms such as XGBoost and random forests. We also develop an internal cross-validation scheme which determines the best residual model amongst competing models. SD-Learning improves the efficiency of D-Learning estimates in binary and multi-arm treatment scenarios. The method is simple to implement and an easy way to improve existing algorithms within the D-Learning family, including original D-Learning, Angle-based D-Learning (AD-Learning), and Robust D-Learning (RD-Learning). We provide theoretical properties and justification of the optimality of SD-Learning. Head-to-head performance comparisons with D-Learning methods are provided through simulations, which demonstrate improvement in terms of average prediction error (APE), misclassification rate, and empirical value, along with a data analysis of an AIDS randomized clinical trial. This article is protected by copyright. All rights reserved.
Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?