том 6 издание 2 страницы 1-14

Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network

Тип публикацииJournal Article
Дата публикации2023-05-01
scimago Q2
wos Q2
БС2
SJR0.500
CiteScore5.0
Impact factor1.9
ISSN25723901, 25723898
Mechanics of Materials
Civil and Structural Engineering
Safety, Risk, Reliability and Quality
Краткое описание

In this article, vibration-based fault diagnostics and response classification have been done for defective high-speed cylindrical bearing operating under unbalance rotor conditions. An experimental study has been performed to capture the vibration signature of faulty bearings in the time domain and for different speeds of the unbalanced rotor. Two-dimensional phase trajectories are generated by estimating the time delay and embedding dimension corresponding to vibration signatures. Qualitative analysis involves the implementation of a deep convolutional neural network (DCNN) utilizing the phase portraits as input to classify the nonlinear vibration responses. Comparison with the state-of-art classifiers such as artificial neural network (ANN), deep neural network (DNN), and k-nearest neighbor (KNN) is presented based on classification accuracy values. Thus, the values obtained are 61%, 67%, 72%, and 99% for ANN, DNN, KNN, and DCNN, respectively. Hence, the proposed intelligent classification model accurately identifies the dynamic behavior of bearing under unbalanced rotor conditions.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems
2 публикации, 50%
Journal of Computing and Information Science in Engineering
1 публикация, 25%
Journal of the Brazilian Society of Mechanical Sciences and Engineering
1 публикация, 25%
1
2

Издатели

1
2
3
ASME International
3 публикации, 75%
Springer Nature
1 публикация, 25%
1
2
3
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Поделиться
Цитировать
ГОСТ |
Цитировать
Rathore M. S., Harsha S. Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network // Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems. 2023. Vol. 6. No. 2. pp. 1-14.
ГОСТ со всеми авторами (до 50) Скопировать
Rathore M. S., Harsha S. Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network // Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems. 2023. Vol. 6. No. 2. pp. 1-14.
RIS |
Цитировать
TY - JOUR
DO - 10.1115/1.4062252
UR - https://doi.org/10.1115/1.4062252
TI - Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network
T2 - Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems
AU - Rathore, Maan Singh
AU - Harsha, S. P.
PY - 2023
DA - 2023/05/01
PB - ASME International
SP - 1-14
IS - 2
VL - 6
SN - 2572-3901
SN - 2572-3898
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Rathore,
author = {Maan Singh Rathore and S. P. Harsha},
title = {Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network},
journal = {Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems},
year = {2023},
volume = {6},
publisher = {ASME International},
month = {may},
url = {https://doi.org/10.1115/1.4062252},
number = {2},
pages = {1--14},
doi = {10.1115/1.4062252}
}
MLA
Цитировать
Rathore, Maan Singh, and S. P. Harsha. “Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network.” Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems, vol. 6, no. 2, May. 2023, pp. 1-14. https://doi.org/10.1115/1.4062252.