том 147 издание 2 страницы 1-18

A Novel Method for Bearing Fault Diagnosis Based on Novel Feature Sets with Machine Learning Technique

Asmita Mali 1
Asmita R Mali 2
Prasad Vishwasrao Shinde 3
P. V. Shinde 4
Amit Patil 5
Amit Prakash Patil 6
Vishal G. Salunkhe 7, 8
Ramchandra Ganapati Desavale 9
R. G. Desavale 10
Prashant S Jadhav 2, 11
1
 
K. E. Society's, Rajarambapu Institute of Technology, Rajaramnagar, Sakharale, Sangli 415 414 Maharashtra, na 415414 India
3
 
Shinde Mala Tal-Walwa, Dist- Sangli Ashta, Maharashtra 416 301 India
5
 
K. E. Society's, Rajarambapu Institute of Technology, Rajaramnagar, Sakharale, Sangli 415 414 Maharashtra, 415414 India
7
 
Agnel Technical Education Complex Sector 9-A, Vashi Navi Mumbai, Maharashtra, India PIN - 400703 Vashi, Maharashtra 400 703 India
9
 
Rajaramnagar Tal-walwa, Dist-Sangli ,Maharashtra Sakharale, Maharashtra Dist-Sangli India
11
 
Sangli Maharashtra, India 415414 India
Тип публикацииJournal Article
Дата публикации2024-09-13
scimago Q2
wos Q2
БС2
SJR0.679
CiteScore5.6
Impact factor3.0
ISSN07424787, 15288897
Краткое описание

Bearings often experience small and medium raceway damage due to operating and loading conditions, which induces abnormal dynamic behavior. In this study, a dynamic model of the bearing system with various conditions and bearing faults is developed based on experimental investigations, Extreme Machine Learning (EML), and supervised machine learning K-Nearest Neighbors (KNN). The effects of defects on system dynamic response and the damage vibration of the bearing are investigated through simulation. Experiments verify the typical dynamic characteristics. The fundamental bearing characteristics frequencies and statistical features withdrawn from a vibration response are utilized for fault identification using a machine learning algorithm. Bearing characteristics, frequencies, and statistical features were applied to both proposed approaches and compared regarding their prediction quality. The result shows that the EML performs better than the KNN in terms of precision of fault recognition by up to 99%. This work provides valuable insights for operation, maintenance, and early fault warning related to bearings.

Найдено 
Найдено 

Топ-30

Журналы

1
Journal of Vibrational Engineering and Technologies
1 публикация, 20%
Mechanical Systems and Signal Processing
1 публикация, 20%
Journal of Control and Decision
1 публикация, 20%
Scientific Reports
1 публикация, 20%
JVC/Journal of Vibration and Control
1 публикация, 20%
1

Издатели

1
2
Springer Nature
2 публикации, 40%
Elsevier
1 публикация, 20%
Taylor & Francis
1 публикация, 20%
SAGE
1 публикация, 20%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
5
Поделиться
Цитировать
ГОСТ |
Цитировать
Mali A. et al. A Novel Method for Bearing Fault Diagnosis Based on Novel Feature Sets with Machine Learning Technique // Journal of Tribology. 2024. Vol. 147. No. 2. pp. 1-18.
ГОСТ со всеми авторами (до 50) Скопировать
Mali A., Mali A. R., Shinde P. V., Shinde P. V., Patil A., Patil A. P., Salunkhe V. G., Desavale R. G., Desavale R. G., Jadhav P. S. A Novel Method for Bearing Fault Diagnosis Based on Novel Feature Sets with Machine Learning Technique // Journal of Tribology. 2024. Vol. 147. No. 2. pp. 1-18.
RIS |
Цитировать
TY - JOUR
DO - 10.1115/1.4066306
UR - https://asmedigitalcollection.asme.org/tribology/article/doi/10.1115/1.4066306/1203092/A-Novel-Method-for-Bearing-Fault-Diagnosis-Based
TI - A Novel Method for Bearing Fault Diagnosis Based on Novel Feature Sets with Machine Learning Technique
T2 - Journal of Tribology
AU - Mali, Asmita
AU - Mali, Asmita R
AU - Shinde, Prasad Vishwasrao
AU - Shinde, P. V.
AU - Patil, Amit
AU - Patil, Amit Prakash
AU - Salunkhe, Vishal G.
AU - Desavale, Ramchandra Ganapati
AU - Desavale, R. G.
AU - Jadhav, Prashant S
PY - 2024
DA - 2024/09/13
PB - ASME International
SP - 1-18
IS - 2
VL - 147
SN - 0742-4787
SN - 1528-8897
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Mali,
author = {Asmita Mali and Asmita R Mali and Prasad Vishwasrao Shinde and P. V. Shinde and Amit Patil and Amit Prakash Patil and Vishal G. Salunkhe and Ramchandra Ganapati Desavale and R. G. Desavale and Prashant S Jadhav},
title = {A Novel Method for Bearing Fault Diagnosis Based on Novel Feature Sets with Machine Learning Technique},
journal = {Journal of Tribology},
year = {2024},
volume = {147},
publisher = {ASME International},
month = {sep},
url = {https://asmedigitalcollection.asme.org/tribology/article/doi/10.1115/1.4066306/1203092/A-Novel-Method-for-Bearing-Fault-Diagnosis-Based},
number = {2},
pages = {1--18},
doi = {10.1115/1.4066306}
}
MLA
Цитировать
Mali, Asmita, et al. “A Novel Method for Bearing Fault Diagnosis Based on Novel Feature Sets with Machine Learning Technique.” Journal of Tribology, vol. 147, no. 2, Sep. 2024, pp. 1-18. https://asmedigitalcollection.asme.org/tribology/article/doi/10.1115/1.4066306/1203092/A-Novel-Method-for-Bearing-Fault-Diagnosis-Based.