Journal of Nondestructive Evaluation Diagnostics and Prognostics of Engineering Systems, volume 6, issue 2, pages 1-14

Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network

Publication typeJournal Article
Publication date2023-05-01
scimago Q2
SJR0.398
CiteScore3.8
Impact factor2
ISSN25723901, 25723898
Mechanics of Materials
Civil and Structural Engineering
Safety, Risk, Reliability and Quality
Abstract

In this article, vibration-based fault diagnostics and response classification have been done for defective high-speed cylindrical bearing operating under unbalance rotor conditions. An experimental study has been performed to capture the vibration signature of faulty bearings in the time domain and for different speeds of the unbalanced rotor. Two-dimensional phase trajectories are generated by estimating the time delay and embedding dimension corresponding to vibration signatures. Qualitative analysis involves the implementation of a deep convolutional neural network (DCNN) utilizing the phase portraits as input to classify the nonlinear vibration responses. Comparison with the state-of-art classifiers such as artificial neural network (ANN), deep neural network (DNN), and k-nearest neighbor (KNN) is presented based on classification accuracy values. Thus, the values obtained are 61%, 67%, 72%, and 99% for ANN, DNN, KNN, and DCNN, respectively. Hence, the proposed intelligent classification model accurately identifies the dynamic behavior of bearing under unbalanced rotor conditions.

Found 
Found 

Top-30

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?