Transition Mechanism from Semimetallic to Semiconductor Behavior in a Graphene Film at the Formation of a Multiply Connected Structure

Chernozatonskii L.A., Antipina L.Y., Kvashnin D.G.
Тип документаJournal Article
Дата публикации2020-02-14
Название журналаJETP Letters
ИздательPleiades Publishing
Квартиль по SCImagoQ2
Квартиль по Web of ScienceQ3
Импакт-фактор 20211.40
ISSN00213640, 10906487
Physics and Astronomy (miscellaneous)
Краткое описание
Recently, it has been found that “closed” nanopores with connected edges lying in neighboring layers can be formed in films consisting of one-to-five-layer graphene flakes irradiated by electrons or heavy ions. In the latter case, a significant change in the transport properties of such modified films from the semimetallic to semiconductor behavior is observed. However, the complete understanding of the mechanism of this transition has not been achieved. A mechanism of such behavior proposed in this work is based on the formation of several graphene layers topologically connected by several nearly located closed nanopores. In this case, the pronounced curvature of graphene layers disturbs the semimetallic character of the spectrum in this system.
Пристатейные ссылки: 20
Цитируется в публикациях: 1
Three Dimensionally Free-Formable Graphene Foam with Designed Structures for Energy and Environmental Applications
Xu X., Guan C., Xu L., Tan Y.H., Zhang D., Wang Y., Zhang H., Blackwood D.J., Wang J., Li M., Ding J.
Q1 ACS Nano 2019 цитирований: 30
Electric field effect in bilayered graphene nanomeshes
Chernozatonskii L.A., Kvashnin D.G.
Q1 Nanotechnology 2019 цитирований: 3
Recent Advances in 2D Lateral Heterostructures
Wang J., Li Z., Chen H., Deng G., Niu X.
Q1 Nano-Micro Letters 2019 цитирований: 39
Open Access
Open access
Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties
Nebogatikova N.A., Antonova I.V., Erohin S.V., Kvashnin D.G., Olejniczak A., Volodin V.A., Skuratov A.V., Krasheninnikov A.V., Sorokin P.B., Chernozatonskii L.A.
Q1 Nanoscale 2018 цитирований: 26
Open Access
Open access
Features of 30° Moiré Graphene Bilayers with Folded Holes
Chernozatonskii L.A., Demin V.A.
Q2 JETP Letters 2018 цитирований: 8
Unconventional superconductivity in magic-angle graphene superlattices
Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P.
Q1 Nature 2018 цитирований: 2541
Bilayered graphene as a platform of nanostructures with folded edge holes
Chernozatonskii L.A., Demin V.A., Lambin P.
Q1 Physical Chemistry Chemical Physics 2016 цитирований: 13
Controlled formation of closed-edge nanopores in graphene
He K., Robertson A.W., Gong C., Allen C.S., Xu Q., Zandbergen H., Grossman J.C., Kirkland A.I., Warner J.H.
Q1 Nanoscale 2015 цитирований: 30
Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices
Park H.J., Ryu G.H., Lee Z.
Applied Microscopy 2015 цитирований: 30
Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes
Kvashnin D.G., Vancsó P., Antipina L.Y., Márk G.I., Biró L.P., Sorokin P.B., Chernozatonskii L.A.
Q1 Nano Research 2014 цитирований: 23
Open Access
Open access
Bigraphene nanomeshes: Structure, properties, and formation
Chernozatonskii L.A., Demin V.A., Artyukh A.A.
Q2 JETP Letters 2014 цитирований: 14
Graphene Reknits Its Holes
Zan R., Ramasse Q.M., Bangert U., Novoselov K.S.
Q1 Nano Letters 2012 цитирований: 180
Low temperature edge dynamics of AB-stacked bilayer graphene: Naturally favored closed zigzag edges
Zhan D., Liu L., Xu Y.N., Ni Z.H., Yan J.X., Zhao C., Shen Z.X.
Q1 Scientific Reports 2011 цитирований: 28
Open Access
Open access
Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles
Levy N., Burke S.A., Meaker K.L., Panlasigui M., Zettl A., Guinea F., Neto A.H., Crommie M.F.
Q1 Science 2010 цитирований: 1106
Open Access
Open access
Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
Guinea F., Katsnelson M.I., Geim A.K.
Q1 Nature Physics 2009 цитирований: 1293
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Chernozatonskii L.A., Antipina L.Y., Kvashnin D.G. Transition Mechanism from Semimetallic to Semiconductor Behavior in a Graphene Film at the Formation of a Multiply Connected Structure // JETP Letters. 2020. Т. 111. № 4. С. 235–238.
RIS |
Цитировать

TY - JOUR

DO - 10.1134/s0021364020040074

UR - http://dx.doi.org/10.1134/S0021364020040074

TI - Transition Mechanism from Semimetallic to Semiconductor Behavior in a Graphene Film at the Formation of a Multiply Connected Structure

T2 - JETP Letters

AU - Chernozatonskii, L. A.

AU - Antipina, L. Yu.

AU - Kvashnin, D. G.

PY - 2020

DA - 2020/02

PB - Pleiades Publishing Ltd

SP - 235-238

IS - 4

VL - 111

SN - 0021-3640

SN - 1090-6487

ER -

BibTex |
Цитировать

@article{2020,

doi = {10.1134/s0021364020040074},

url = {https://doi.org/10.1134%2Fs0021364020040074},

year = 2020,

month = {feb},

publisher = {Pleiades Publishing Ltd},

volume = {111},

number = {4},

pages = {235--238},

author = {L. A. Chernozatonskii and L. Yu. Antipina and D. G. Kvashnin},

title = {Transition Mechanism from Semimetallic to Semiconductor Behavior in a Graphene Film at the Formation of a Multiply Connected Structure}

}

MLA
Цитировать
Chernozatonskii, L. A., L. Yu. Antipina, and D. G. Kvashnin. “Transition Mechanism from Semimetallic to Semiconductor Behavior in a Graphene Film at the Formation of a Multiply Connected Structure.” JETP Letters 111.4 (2020): 235–238. Crossref. Web.