том 57 издание 5 страницы 443-474

Inorganic Materials for Regenerative Medicine

Тип публикацииJournal Article
Дата публикации2021-05-17
scimago Q4
wos Q4
БС2
SJR0.183
CiteScore1.3
Impact factor0.7
ISSN00201685, 16083172
Materials Chemistry
Metals and Alloys
Inorganic Chemistry
General Chemical Engineering
Краткое описание
Methods that are used in regenerative medicine rely on the inherent ability of living organisms to regenerate their tissue. If the size (volume) of a defect exceeds some critical level, regeneration can be initiated and maintained using resorbable porous scaffolds made of natural, artificial, or synthetic materials capable of temporary defect compensation. When modified with pharmaceutical products and specific proteins or cells, such porous scaffolds are referred to as tissue engineering constructs. Inorganic resorbable materials are most frequently used for bone tissue defect repair. Natural bone is a composite having a polymer (collagen) matrix filled with calcium phosphate nanocrystals in the form of insoluble calcium hydroxyapatite. For this reason, calcium phosphate-based materials are leaders of medical inorganic materials research. To date, resorbable biocompatible materials based on tricalcium phosphate, calcium pyrophosphate, brushite, monetite, and octacalcium phosphate have been developed. Calcium hydroxyapatite is known as an inorganic ion exchanger. Because of this, the composition of bone tissue includes, in addition to phosphate and calcium ions, carbonate, silicate, and sulfate ions, as well as sodium, potassium, magnesium, iron, strontium, zinc and some other metal ions. The fact that bone tissue contains anions substituting for orthophosphate ions or hydroxide ions in the calcium hydroxyapatite of bone tissue prompted researchers to produce resorbable materials based on calcium sulfates, calcium carbonate, and calcium phosphates in which orthophosphate ions are replaced by anions mentioned above. Cation substitutions in calcium hydroxyapatite of bone tissue and the chemical composition of the medium of an organism allow one to produce and use resorbable materials for bone implants consisting of cation-substituted calcium phosphates and calcium–biocompatible cation double phosphates, such as sodium-substituted tricalcium phosphate, potassium-substituted tricalcium phosphate, sodium rhenanite, potassium rhenanite, and calcium magnesium double pyrophosphate. The resorption of an inorganic material intended for use as a pharmaceutical product can be controlled via designing a preset phase composition. The above-mentioned biocompatible resorbable phases can be used in various combinations in already existing composite materials or composites under development. The microstructure of a biocompatible resorbable inorganic material can be formed as a result of various physicochemical processes. The phase composition and microstructure of a ceramic material are determined by solid-state and liquid-phase sintering processes, as well as by heterogeneous chemical reactions during firing. The phase composition and microstructure of cement stone are formed as a result of chemical binding reactions initiated by the addition of water or aqueous solutions. Amorphous materials can be prepared via melting of starting reagents or sol–gel processing. The osteoconductivity of a biocompatible resorbable inorganic material is an important property necessary for body fluids and bone cells to be able to penetrate into the implant material. Macroporosity, which determines the osteoconductivity of a resorbable inorganic material, can be produced using various technological approaches. 3D printing methods make it possible to obtain materials with tailored phase composition and microstructure and permeable macroporosity of preset architecture. A large surface area of a porous inorganic material is thought to be a factor of controlling the resorption rate. This review summarizes information about existing biocompatible resorbable inorganic materials for regenerative medicine and considers physicochemical principles of the preparation of such materials with the use of synthetic starting powders and natural materials.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
Ceramics
5 публикаций, 16.13%
Materials
4 публикации, 12.9%
Inorganic Materials
3 публикации, 9.68%
Glass and Ceramics (English translation of Steklo i Keramika)
2 публикации, 6.45%
Biomimetics
2 публикации, 6.45%
Coatings
1 публикация, 3.23%
Journal of Composites Science
1 публикация, 3.23%
Russian Journal of General Chemistry
1 публикация, 3.23%
Journal of Materials Chemistry B
1 публикация, 3.23%
Russian Journal of Inorganic Chemistry
1 публикация, 3.23%
Proceedings of the National Academy of Sciences of Belarus Chemical Series
1 публикация, 3.23%
Biomedical Materials (Bristol)
1 публикация, 3.23%
Boletin de la Sociedad Espanola de Ceramica y Vidrio
1 публикация, 3.23%
Inorganic Materials: Applied Research
1 публикация, 3.23%
Journal of Chemical & Engineering Data
1 публикация, 3.23%
Журнал Общей Химии
1 публикация, 3.23%
Advanced Engineering Research
1 публикация, 3.23%
Mendeleev Communications
1 публикация, 3.23%
Journal of Analytical Chemistry
1 публикация, 3.23%
Chemometrics and Intelligent Laboratory Systems
1 публикация, 3.23%
1
2
3
4
5

Издатели

2
4
6
8
10
12
14
MDPI
13 публикаций, 41.94%
Pleiades Publishing
8 публикаций, 25.81%
Springer Nature
2 публикации, 6.45%
Elsevier
2 публикации, 6.45%
Royal Society of Chemistry (RSC)
1 публикация, 3.23%
Publishing House Belorusskaya Nauka
1 публикация, 3.23%
IOP Publishing
1 публикация, 3.23%
American Chemical Society (ACS)
1 публикация, 3.23%
FSFEI HE Don State Technical University
1 публикация, 3.23%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 3.23%
2
4
6
8
10
12
14
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
31
Поделиться
Цитировать
ГОСТ |
Цитировать
Safronova T. V. Inorganic Materials for Regenerative Medicine // Inorganic Materials. 2021. Vol. 57. No. 5. pp. 443-474.
ГОСТ со всеми авторами (до 50) Скопировать
Safronova T. V. Inorganic Materials for Regenerative Medicine // Inorganic Materials. 2021. Vol. 57. No. 5. pp. 443-474.
RIS |
Цитировать
TY - JOUR
DO - 10.1134/s002016852105006x
UR - https://doi.org/10.1134/s002016852105006x
TI - Inorganic Materials for Regenerative Medicine
T2 - Inorganic Materials
AU - Safronova, T V
PY - 2021
DA - 2021/05/17
PB - Pleiades Publishing
SP - 443-474
IS - 5
VL - 57
SN - 0020-1685
SN - 1608-3172
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Safronova,
author = {T V Safronova},
title = {Inorganic Materials for Regenerative Medicine},
journal = {Inorganic Materials},
year = {2021},
volume = {57},
publisher = {Pleiades Publishing},
month = {may},
url = {https://doi.org/10.1134/s002016852105006x},
number = {5},
pages = {443--474},
doi = {10.1134/s002016852105006x}
}
MLA
Цитировать
Safronova, T. V.. “Inorganic Materials for Regenerative Medicine.” Inorganic Materials, vol. 57, no. 5, May. 2021, pp. 443-474. https://doi.org/10.1134/s002016852105006x.