SIAM Journal of Scientific Computing, volume 36, issue 2, pages A588-A608
Preconditioned Krylov Subspace Methods for Sampling Multivariate Gaussian Distributions
Edmond Chow
1
,
Yousef Saad
2
2
Computer Science and Engineering
Publication type: Journal Article
Publication date: 2014-04-03
Journal:
SIAM Journal of Scientific Computing
scimago Q1
SJR: 1.803
CiteScore: 5.5
Impact factor: 3
ISSN: 10648275, 10957197
Computational Mathematics
Applied Mathematics
Abstract
A common problem in statistics is to compute sample vectors from a multivariate Gaussian distribution with zero mean and a given covariance matrix $A$. A canonical approach to the problem is to compute vectors of the form $y = S z$, where $S$ is the Cholesky factor or square root of $A$, and $z$ is a standard normal vector. When $A$ is large, such an approach becomes computationally expensive. This paper considers preconditioned Krylov subspace methods to perform this task. The Lanczos process provides a means to approximate $A^{1/2} z$ for any vector $z$ from an $m$-dimensional Krylov subspace. The main contribution of this paper is to show how to enhance the convergence of the process via preconditioning. Both incomplete Cholesky preconditioners and approximate inverse preconditioners are discussed. It is argued that the latter class of preconditioners has an advantage in the context of sampling. Numerical tests, performed with stationary covariance matrices used to model Gaussian processes, illustrate the dramatic improvement in computation time that can result from preconditioning.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.