Graphene on Cu(111) at the nonzero temperatures: Molecular dynamic simulation
We present results of molecular dynamic simulation of continuous graphene monolayer on Cu(111). In this paper, we investigate the dependencies of the average binding energy and the average binding distance on the temperature. The interaction between carbon and copper atoms was described by Lennard-Jones potential. It is shown that the binding energy practically remains constant in a wide range of temperatures 0–800 K. However, in the same temperature range, the binding distance of graphene on Cu(111) surface has a linear dependence on temperature. The dependence of the linear thermal expansion coefficient of the binding distance on Lennard-Jones parameters has been calculated. We suggest a simple theoretical model to explain this dependence qualitatively.
Top-30
Journals
1
|
|
Physical Review Letters
1 publication, 100%
|
|
1
|
Publishers
1
|
|
American Physical Society (APS)
1 publication, 100%
|
|
1
|
- We do not take into account publications without a DOI.
- Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
- Statistics recalculated weekly.