Open Access
Open access
Algebra Colloquium, volume 19, issue spec01, pages 1139-1154

Most Commutative Rings Have Maximal Subrings

Publication typeJournal Article
Publication date2012-10-31
scimago Q3
SJR0.339
CiteScore0.6
Impact factor0.4
ISSN10053867, 02191733
Applied Mathematics
Algebra and Number Theory
Abstract

It is shown that if R is a ring with unit element which is not algebraic over the prime subring of R, then R has a maximal subring. It is shown that whenever R ⊆ T are rings such that there exists a maximal subring V of T, which is integrally closed in T and U(R) ⊈ V, then R has a maximal subring. In particular, it is proved that if R is algebraic over ℤ and there exists a natural number n > 1 with n ∈ U(R), then R has a maximal subring. It is shown that if R is an infinite direct product of certain fields, then the maximal ideals M for which RM (R/M) has maximal subrings are characterized. It is observed that if R is a ring, then either R has a maximal subring or it must be a Hilbert ring. In particular, every reduced ring R with |R|>220 or J(R) ≠ 0 has a maximal subring. Finally, the semi-local rings having maximal subrings are fully characterized.

Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?
Profiles