International Journal of Computational Intelligence and Applications, volume 24, issue 01

Optimizing the Hybrid Feature Selection in the DNA Microarray for Cancer Diagnosis Using Fuzzy Entropy and the Giza Pyramid Construction Algorithm

Publication typeJournal Article
Publication date2024-11-30
scimago Q3
SJR0.279
CiteScore2.6
Impact factor0.8
ISSN14690268, 17575885
Abstract

Biotechnological analysis of DNA microarray genes provides valuable insights into the discovery and treatment of diseases such as cancer. It may also be crucial for the prevention and treatment of other genetic diseases. However, due to the large number of features and dimensions in a DNA microarray, the “curse of dimensions” problem is very common. Many machine learning methods require an effective subset of input genes to achieve high accuracy. Unfortunately, extracting features (genes) is an inherently NP-hard problem. Recently, the use of metaheuristics to overcome the NP-hardness of the feature extraction problem has attracted the attention of many researchers. In this paper, we use the combination of fuzzy entropy and Giza Pyramid Construction (GPC) for feature selection. First, redundant features in the microarray dataset are removed using the fuzzy entropy approach. GPC is then used to reduce the execution time. This results in the selection of a near-optimal subset of genes for cancer detection. Dimensionality reduction with GPC followed by classification with Convolutional Neural Network (CNN) creates a synergy to increase efficiency. The proposed method is tested on five well-known cancer patient datasets: leukemia, lymphoma, MLL, ovarian, and SRBCT. The performance of CNN was also measured with four well-known classifiers, including K-nearest neighbor, naïve Bayesian, decision tree, and logistic regression. Our results show that, on average, CNN has the highest accuracy, recall, precision, and F-measure in all datasets.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?