SEALS: a framework for building self-adaptive virtual machines
1
University of Rennes, France / Inria, France / IRISA, France
|
Publication type: Proceedings Article
Publication date: 2021-10-17
Abstract
Over recent years, self-adaptation has become a major concern for software systems that evolve in changing environments. While expert developers may choose a manual implementation when self-adaptation is the primary concern, self-adaptation should be abstracted for non-expert developers or when it is a secondary concern. We present SEALS, a framework for building self-adaptive virtual machines for domain-specific languages. This framework provides first-class entities for the language engineer to promote domain-specific feedback loops in the definition of the DSL operational semantics. In particular, the framework supports the definition of (i) the abstract syntax and the semantics of the language as well as the correctness envelope defining the acceptable semantics for a domain concept, (ii) the feedback loop and associated trade-off reasoning, and (iii) the adaptations and the predictive model of their impact on the trade-off. We use this framework to build three languages with self-adaptive virtual machines and discuss the relevance of the abstractions, effectiveness of correctness envelopes, and compare their code size and performance results to their manually implemented counterparts. We show that the framework provides suitable abstractions for the implementation of self-adaptive operational semantics while introducing little performance overhead compared to a manual implementation.
Found
Found
- We do not take into account publications without a DOI.
- Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.