том 22 издание 4 страницы 1-50

Energy-Efficient Approximate Edge Inference Systems

Soumendu Kumar Ghosh 1
Arnab Raha 2
Vijay Krishna Raghunathan 1
Тип публикацииJournal Article
Дата публикации2023-07-24
scimago Q2
wos Q2
БС2
SJR0.766
CiteScore5.6
Impact factor2.6
ISSN15399087, 15583465
Hardware and Architecture
Software
Краткое описание

The rapid proliferation of the Internet of Things (IoT) and the dramatic resurgence of artificial intelligence (AI) based application workloads have led to immense interest in performing inference on energy-constrained edge devices. Approximate computing (a design paradigm that trades off a small degradation in application quality for disproportionate energy savings) is a promising technique to enable energy-efficient inference at the edge. This paper introduces the concept of an approximate edge inference system ( AxIS ) and proposes a systematic methodology to perform joint approximations between different subsystems in a deep neural network (DNN)-based edge inference system, leading to significant energy benefits compared to approximating individual subsystems in isolation. We use a smart camera system that executes various DNN-based image classification and object detection applications to illustrate how the sensor, memory, compute, and communication subsystems can all be approximated synergistically. We demonstrate our proposed methodology using two variants of a smart camera system: (a) Cam Edge , where the DNN is executed locally on the edge device, and (b) Cam Cloud , where the edge device sends the captured image to a remote cloud server that executes the DNN. We have prototyped such an approximate inference system using an Intel Stratix IV GX-based Terasic TR4-230 FPGA development board. Experimental results obtained using six large DNNs and four compact DNNs running image classification applications demonstrate significant energy savings (≈ 1.6 ×–4.7 × for large DNNs and ≈ 1.5 ×–3.6 × for small DNNs) for minimal (< \(1\% \) ) loss in application-level quality. Furthermore, results using four object detection DNNs exhibit energy savings of ≈ 1.5 ×–5.2 × for similar quality loss. Compared to approximating a single subsystem in isolation, AxIS achieves 1.05 ×–3.25 × gains in energy savings for image classification and 1.35 ×–4.2 × gains for object detection on average, for minimal ( \(\lt 1\% \) ) application-level quality loss.

Найдено 
Найдено 

Топ-30

Журналы

1
Transactions on Embedded Computing Systems
1 публикация, 7.14%
IEEE Internet of Things Journal
1 публикация, 7.14%
IEEE Access
1 публикация, 7.14%
Lecture Notes in Computer Science
1 публикация, 7.14%
ACM Computing Surveys
1 публикация, 7.14%
IEEE Embedded Systems Letters
1 публикация, 7.14%
Frontiers in High Performance Computing
1 публикация, 7.14%
IEEE Transactions on Cloud Computing
1 публикация, 7.14%
ACM Transactions on Design Automation of Electronic Systems
1 публикация, 7.14%
1

Издатели

1
2
3
4
5
6
7
8
Institute of Electrical and Electronics Engineers (IEEE)
8 публикаций, 57.14%
Association for Computing Machinery (ACM)
4 публикации, 28.57%
Springer Nature
1 публикация, 7.14%
Frontiers Media S.A.
1 публикация, 7.14%
1
2
3
4
5
6
7
8
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
14
Поделиться
Цитировать
ГОСТ |
Цитировать
Ghosh S. K., Raha A., Raghunathan V. K. Energy-Efficient Approximate Edge Inference Systems // Transactions on Embedded Computing Systems. 2023. Vol. 22. No. 4. pp. 1-50.
ГОСТ со всеми авторами (до 50) Скопировать
Ghosh S. K., Raha A., Raghunathan V. K. Energy-Efficient Approximate Edge Inference Systems // Transactions on Embedded Computing Systems. 2023. Vol. 22. No. 4. pp. 1-50.
RIS |
Цитировать
TY - JOUR
DO - 10.1145/3589766
UR - https://doi.org/10.1145/3589766
TI - Energy-Efficient Approximate Edge Inference Systems
T2 - Transactions on Embedded Computing Systems
AU - Ghosh, Soumendu Kumar
AU - Raha, Arnab
AU - Raghunathan, Vijay Krishna
PY - 2023
DA - 2023/07/24
PB - Association for Computing Machinery (ACM)
SP - 1-50
IS - 4
VL - 22
SN - 1539-9087
SN - 1558-3465
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Ghosh,
author = {Soumendu Kumar Ghosh and Arnab Raha and Vijay Krishna Raghunathan},
title = {Energy-Efficient Approximate Edge Inference Systems},
journal = {Transactions on Embedded Computing Systems},
year = {2023},
volume = {22},
publisher = {Association for Computing Machinery (ACM)},
month = {jul},
url = {https://doi.org/10.1145/3589766},
number = {4},
pages = {1--50},
doi = {10.1145/3589766}
}
MLA
Цитировать
Ghosh, Soumendu Kumar, et al. “Energy-Efficient Approximate Edge Inference Systems.” Transactions on Embedded Computing Systems, vol. 22, no. 4, Jul. 2023, pp. 1-50. https://doi.org/10.1145/3589766.