ACM Transactions on Modeling and Performance Evaluation of Computing Systems, volume 3, issue 1, pages 1-25

An Online Emergency Demand Response Mechanism for Cloud Computing

Publication typeJournal Article
Publication date2018-02-13
scimago Q2
SJR0.525
CiteScore2.1
Impact factor0.7
ISSN23763639, 23763647
Computer Science (miscellaneous)
Hardware and Architecture
Information Systems
Computer Networks and Communications
Software
Safety, Risk, Reliability and Quality
Media Technology
Abstract

This article studies emergency demand response (EDR) mechanisms from a data center perspective, where a cloud participates in a mandatory EDR program while receiving computing job bids from cloud users in an online fashion. We target a realistic EDR mechanism where (i) the cloud provider dynamically packs different types of resources on servers into requested VMs and computes job schedules to meet users’ requirements, (ii) the power consumption of servers in the cloud is limited by the grid through the EDR program, and (iii) the operation cost of the cloud is considered in the calculation of social welfare, measured by an electricity cost that consists of both volume charge and peak charge. We propose an online auction for dynamic cloud resource provisioning that is under the control of the EDR program, runs in polynomial time, achieves truthfulness, and close-to-optimal social welfare for the cloud ecosystem. In the design of the online auction, we first propose a new framework, compact exponential LPs, to handle job scheduling constraints in the time domain. We then develop a posted pricing auction framework toward the truthful online auction design, which leverages the classic primal-dual technique for approximation algorithm design. We evaluate our online auctions through both theoretical analysis and empirical studies driven by real-world traces.

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?