Тип публикации: Proceedings Article
Дата публикации: 2020-07-08
Краткое описание
The modern machine learning methods allow one to obtain the data-driven models in various ways. However, the more complex the model is, the harder it is to interpret. In the paper, we describe the algorithm for the mathematical equations discovery from the given observations data. The algorithm combines genetic programming with the sparse regression. This algorithm allows obtaining different forms of the resulting models. As an example, it could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery. The main idea is to collect a bag of the building blocks (it may be simple functions or their derivatives of arbitrary order) and consequently take them from the bag to create combinations, which will represent terms of the final equation. The selected terms pass to the evolutionary algorithm, which is used to evolve the selection. The evolutionary steps are combined with the sparse regression to pick only the significant terms. As a result, we obtain a short and interpretable expression that describes the physical process that lies beyond the data. In the paper, two examples of the algorithm application are described: the PDE discovery for the metocean processes and the function discovery for the acoustics.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Procedia Computer Science
1 публикация, 25%
|
|
|
Chemical Engineering Research and Design
1 публикация, 25%
|
|
|
1
|
Издатели
|
1
2
|
|
|
Association for Computing Machinery (ACM)
2 публикации, 50%
|
|
|
Elsevier
2 публикации, 50%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Всего цитирований:
4
Цитирований c 2024:
1
(25%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Hvatov A., Maslyaev M. The data-driven physical-based equations discovery using evolutionary approach // GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. 2020.
ГОСТ со всеми авторами (до 50)
Скопировать
Hvatov A., Maslyaev M. The data-driven physical-based equations discovery using evolutionary approach // GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. 2020.
Цитировать
RIS
Скопировать
TY - CPAPER
DO - 10.1145/3377929.3389943
UR - https://doi.org/10.1145/3377929.3389943
TI - The data-driven physical-based equations discovery using evolutionary approach
T2 - GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
AU - Hvatov, Alexander
AU - Maslyaev, Mikhail
PY - 2020
DA - 2020/07/08
PB - Association for Computing Machinery (ACM)
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@inproceedings{2020_Hvatov,
author = {Alexander Hvatov and Mikhail Maslyaev},
title = {The data-driven physical-based equations discovery using evolutionary approach},
year = {2020},
month = {jul},
publisher = {Association for Computing Machinery (ACM)}
}