страницы 43-44

Automatic evolutionary learning of composite models with knowledge enrichment

Тип публикацииProceedings Article
Дата публикации2020-07-08
Краткое описание
This paper provides the main concepts of the knowledge-enriched AutoML approach and shortly describes the current results of the proof of concept implementation within the FEDOT framework. By knowledge enrichment, we mean the insertion of domain-specific models and expert-like meta-heuristics. Also, we involve multi-scale learning as a part of complex models identification. The proposed concepts make it possible to create effective and interpretable composite models.
Найдено 
Найдено 

Топ-30

Журналы

1
Computers and Geosciences
1 публикация, 16.67%
Future Generation Computer Systems
1 публикация, 16.67%
Procedia Computer Science
1 публикация, 16.67%
Communications in Computer and Information Science
1 публикация, 16.67%
Applied Sciences (Switzerland)
1 публикация, 16.67%
1

Издатели

1
2
3
Elsevier
3 публикации, 50%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 16.67%
Springer Nature
1 публикация, 16.67%
MDPI
1 публикация, 16.67%
1
2
3
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Поделиться
Цитировать
ГОСТ |
Цитировать
Kalyuzhnaya A. V. et al. Automatic evolutionary learning of composite models with knowledge enrichment // GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. 2020. pp. 43-44.
ГОСТ со всеми авторами (до 50) Скопировать
Kalyuzhnaya A. V., Nikitin N. O., Vychuzhanin P., Hvatov A., Boukhanovsky A. Automatic evolutionary learning of composite models with knowledge enrichment // GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. 2020. pp. 43-44.
RIS |
Цитировать
TY - CPAPER
DO - 10.1145/3377929.3398167
UR - https://doi.org/10.1145/3377929.3398167
TI - Automatic evolutionary learning of composite models with knowledge enrichment
T2 - GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
AU - Kalyuzhnaya, Anna V
AU - Nikitin, Nikolay O
AU - Vychuzhanin, Pavel
AU - Hvatov, Alexander
AU - Boukhanovsky, Alexander
PY - 2020
DA - 2020/07/08
PB - Association for Computing Machinery (ACM)
SP - 43-44
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@inproceedings{2020_Kalyuzhnaya,
author = {Anna V Kalyuzhnaya and Nikolay O Nikitin and Pavel Vychuzhanin and Alexander Hvatov and Alexander Boukhanovsky},
title = {Automatic evolutionary learning of composite models with knowledge enrichment},
year = {2020},
pages = {43--44},
month = {jul},
publisher = {Association for Computing Machinery (ACM)}
}