Тип публикации: Proceedings Article
Дата публикации: 2020-07-08
Краткое описание
This paper provides the main concepts of the knowledge-enriched AutoML approach and shortly describes the current results of the proof of concept implementation within the FEDOT framework. By knowledge enrichment, we mean the insertion of domain-specific models and expert-like meta-heuristics. Also, we involve multi-scale learning as a part of complex models identification. The proposed concepts make it possible to create effective and interpretable composite models.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Computers and Geosciences
1 публикация, 16.67%
|
|
|
Future Generation Computer Systems
1 публикация, 16.67%
|
|
|
Procedia Computer Science
1 публикация, 16.67%
|
|
|
Communications in Computer and Information Science
1 публикация, 16.67%
|
|
|
Applied Sciences (Switzerland)
1 публикация, 16.67%
|
|
|
1
|
Издатели
|
1
2
3
|
|
|
Elsevier
3 публикации, 50%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 16.67%
|
|
|
Springer Nature
1 публикация, 16.67%
|
|
|
MDPI
1 публикация, 16.67%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Всего цитирований:
6
Цитирований c 2024:
0
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Kalyuzhnaya A. V. et al. Automatic evolutionary learning of composite models with knowledge enrichment // GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. 2020. pp. 43-44.
ГОСТ со всеми авторами (до 50)
Скопировать
Kalyuzhnaya A. V., Nikitin N. O., Vychuzhanin P., Hvatov A., Boukhanovsky A. Automatic evolutionary learning of composite models with knowledge enrichment // GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. 2020. pp. 43-44.
Цитировать
RIS
Скопировать
TY - CPAPER
DO - 10.1145/3377929.3398167
UR - https://doi.org/10.1145/3377929.3398167
TI - Automatic evolutionary learning of composite models with knowledge enrichment
T2 - GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
AU - Kalyuzhnaya, Anna V
AU - Nikitin, Nikolay O
AU - Vychuzhanin, Pavel
AU - Hvatov, Alexander
AU - Boukhanovsky, Alexander
PY - 2020
DA - 2020/07/08
PB - Association for Computing Machinery (ACM)
SP - 43-44
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@inproceedings{2020_Kalyuzhnaya,
author = {Anna V Kalyuzhnaya and Nikolay O Nikitin and Pavel Vychuzhanin and Alexander Hvatov and Alexander Boukhanovsky},
title = {Automatic evolutionary learning of composite models with knowledge enrichment},
year = {2020},
pages = {43--44},
month = {jul},
publisher = {Association for Computing Machinery (ACM)}
}