ACM Transactions on Modeling and Performance Evaluation of Computing Systems, volume 6, issue 2, pages 1-33

Covert Cycle Stealing in a Single FIFO Server

Publication typeJournal Article
Publication date2021-06-30
scimago Q2
SJR0.525
CiteScore2.1
Impact factor0.7
ISSN23763639, 23763647
Computer Science (miscellaneous)
Hardware and Architecture
Information Systems
Computer Networks and Communications
Software
Safety, Risk, Reliability and Quality
Media Technology
Abstract

Consider a setting where Willie generates a Poisson stream of jobs and routes them to a single server that follows the first-in first-out discipline. Suppose there is an adversary Alice, who desires to receive service without being detected. We ask the question: What is the number of jobs that she can receive covertly, i.e., without being detected by Willie? In the case where both Willie and Alice jobs have exponential service times with respective rates μ 1 and μ 2 , we demonstrate a phase-transition when Alice adopts the strategy of inserting a single job probabilistically when the server idles: over n busy periods, she can achieve a covert throughput, measured by the expected number of jobs covertly inserted, of O (√ n ) when μ 1 < 2 μ 2 , O (√ n log n ) when μ 1 = 2μ 2 , and O ( n μ 21 ) when μ 1 > 2μ 2 . When both Willie and Alice jobs have general service times, we establish an upper bound for the number of jobs Alice can execute covertly. This bound is related to the Fisher information. More general insertion policies are also discussed.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?