Open Access
Open access
том 2021 страницы 1-9

Multiobjective Genetic Algorithm and Convolutional Neural Network Based COVID-19 Identification in Chest X-Ray Images

Prashant Kumar Shukla 1
Jasminder Kaur Sandhu 2
Anamika Ahirwar 3
Deepika Ghai 4
Priti Maheshwary 5
Piyush Shukla 1
Тип публикацииJournal Article
Дата публикации2021-02-25
scimago Q2
SJR0.400
CiteScore
Impact factor
ISSN1024123X, 15635147
General Mathematics
General Engineering
Краткое описание

COVID-19 is a new disease, caused by the novel coronavirus SARS-CoV-2, that was firstly delineated in humans in 2019. Coronaviruses cause a range of illness in patients varying from common cold to advanced respiratory syndromes such as Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome (MERS-CoV). The SARS-CoV-2 outbreak has resulted in a global pandemic, and its transmission is increasing at a rapid rate. Diagnostic testing and approaches provide a valuable tool for doctors and support them with the screening process. Automatic COVID-19 identification in chest X-ray images can be useful to test for COVID-19 infection at a good speed. Therefore, in this paper, a framework is designed by using Convolutional Neural Networks (CNN) to diagnose COVID-19 patients using chest X-ray images. A pretrained GoogLeNet is utilized for implementing the transfer learning (i.e., by replacing some sets of final network CNN layers). 20-fold cross-validation is considered to overcome the overfitting quandary. Finally, the multiobjective genetic algorithm is considered to tune the hyperparameters of the proposed COVID-19 identification in chest X-ray images. Extensive experiments show that the proposed COVID-19 identification model obtains remarkably better results and may be utilized for real-time testing of patients.

Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
14
Journal of Healthcare Engineering
13 публикаций, 7.03%
Computational Intelligence and Neuroscience
12 публикаций, 6.49%
IEEE Access
3 публикации, 1.62%
Sensors
2 публикации, 1.08%
Informatics in Medicine Unlocked
2 публикации, 1.08%
Wireless Communications and Mobile Computing
2 публикации, 1.08%
Mathematical Problems in Engineering
2 публикации, 1.08%
Soft Computing
2 публикации, 1.08%
Multimedia Tools and Applications
2 публикации, 1.08%
PLoS ONE
2 публикации, 1.08%
Lecture Notes in Networks and Systems
2 публикации, 1.08%
Biomedical and Pharmacology Journal
2 публикации, 1.08%
Handbook of Research on Global Business Opportunities
2 публикации, 1.08%
E3S Web of Conferences
2 публикации, 1.08%
Intelligent Automation and Soft Computing
1 публикация, 0.54%
Computers in Biology and Medicine
1 публикация, 0.54%
Contrast Media and Molecular Imaging
1 публикация, 0.54%
Journal of Function Spaces
1 публикация, 0.54%
BioMed Research International
1 публикация, 0.54%
Advances in Computational Intelligence and Robotics
1 публикация, 0.54%
Journal of Intelligent and Fuzzy Systems
1 публикация, 0.54%
Pharmacological Reports
1 публикация, 0.54%
International Journal of Sociotechnology and Knowledge Development
1 публикация, 0.54%
Genetic and Evolutionary Computation
1 публикация, 0.54%
Information Fusion
1 публикация, 0.54%
Expert Systems with Applications
1 публикация, 0.54%
IoT and Big Data Analytics
1 публикация, 0.54%
New Generation Computing
1 публикация, 0.54%
International Journal of Image and Data Fusion
1 публикация, 0.54%
2
4
6
8
10
12
14

Издатели

20
40
60
80
100
120
Institute of Electrical and Electronics Engineers (IEEE)
103 публикации, 55.68%
Hindawi Limited
28 публикаций, 15.14%
Springer Nature
16 публикаций, 8.65%
Elsevier
13 публикаций, 7.03%
Wiley
7 публикаций, 3.78%
IGI Global
4 публикации, 2.16%
MDPI
3 публикации, 1.62%
Taylor & Francis
2 публикации, 1.08%
Public Library of Science (PLoS)
2 публикации, 1.08%
Bentham Science Publishers Ltd.
2 публикации, 1.08%
Oriental Scientific Publishing Company
2 публикации, 1.08%
EDP Sciences
2 публикации, 1.08%
SAGE
1 публикация, 0.54%
20
40
60
80
100
120
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
185
Поделиться
Цитировать
ГОСТ |
Цитировать
Shukla P. K. et al. Multiobjective Genetic Algorithm and Convolutional Neural Network Based COVID-19 Identification in Chest X-Ray Images // Mathematical Problems in Engineering. 2021. Vol. 2021. pp. 1-9.
ГОСТ со всеми авторами (до 50) Скопировать
Shukla P. K., Sandhu J. K., Ahirwar A., Ghai D., Maheshwary P., Shukla P. Multiobjective Genetic Algorithm and Convolutional Neural Network Based COVID-19 Identification in Chest X-Ray Images // Mathematical Problems in Engineering. 2021. Vol. 2021. pp. 1-9.
RIS |
Цитировать
TY - JOUR
DO - 10.1155/2021/7804540
UR - https://doi.org/10.1155/2021/7804540
TI - Multiobjective Genetic Algorithm and Convolutional Neural Network Based COVID-19 Identification in Chest X-Ray Images
T2 - Mathematical Problems in Engineering
AU - Shukla, Prashant Kumar
AU - Sandhu, Jasminder Kaur
AU - Ahirwar, Anamika
AU - Ghai, Deepika
AU - Maheshwary, Priti
AU - Shukla, Piyush
PY - 2021
DA - 2021/02/25
PB - Hindawi Limited
SP - 1-9
VL - 2021
SN - 1024-123X
SN - 1563-5147
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Shukla,
author = {Prashant Kumar Shukla and Jasminder Kaur Sandhu and Anamika Ahirwar and Deepika Ghai and Priti Maheshwary and Piyush Shukla},
title = {Multiobjective Genetic Algorithm and Convolutional Neural Network Based COVID-19 Identification in Chest X-Ray Images},
journal = {Mathematical Problems in Engineering},
year = {2021},
volume = {2021},
publisher = {Hindawi Limited},
month = {feb},
url = {https://doi.org/10.1155/2021/7804540},
pages = {1--9},
doi = {10.1155/2021/7804540}
}