Open Access
Open access
том 2023 страницы 1-19

Solving Nonlinear Fractional PDEs with Applications to Physics and Engineering Using the Laplace Residual Power Series Method

Тип публикацииJournal Article
Дата публикации2023-12-27
scimago Q2
wos Q2
БС3
SJR0.463
CiteScore3.6
Impact factor1.5
ISSN16879643, 16879651
Applied Mathematics
Analysis
Краткое описание

The Laplace residual power series (LRPS) method uses the Caputo fractional derivative definition to solve nonlinear fractional partial differential equations. This technique has been applied successfully to solve equations such as the fractional Kuramoto–Sivashinsky equation (FKSE) and the fractional generalized regularized long wave equation (GRLWE). By transforming the equation into the Laplace domain and replacing fractional derivatives with integer derivatives, the LRPS method can solve the resulting equation using a power series expansion. The resulting solution is accurate and convergent, as demonstrated in this paper by comparing it with other analytical methods. The LRPS approach offers both computational efficiency and solution accuracy, making it an effective technique for solving nonlinear fractional partial differential equations (NFPDEs). The results are presented in the form of graphs for various values of the order of the fractional derivative and time, and the essential objective is to reduce computation effort.

Найдено 
Найдено 

Топ-30

Журналы

1
AIP Conference Proceedings
1 публикация, 100%
1

Издатели

1
AIP Publishing
1 публикация, 100%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Поделиться
Цитировать
ГОСТ |
Цитировать
Ali K. K. et al. Solving Nonlinear Fractional PDEs with Applications to Physics and Engineering Using the Laplace Residual Power Series Method // International Journal of Differential Equations. 2023. Vol. 2023. pp. 1-19.
ГОСТ со всеми авторами (до 50) Скопировать
Ali K. K., Abd Elbary F. E., Abdel-wahed M. S., Elsisy M. A., Semary M. S. Solving Nonlinear Fractional PDEs with Applications to Physics and Engineering Using the Laplace Residual Power Series Method // International Journal of Differential Equations. 2023. Vol. 2023. pp. 1-19.
RIS |
Цитировать
TY - JOUR
DO - 10.1155/2023/1240970
UR - https://doi.org/10.1155/2023/1240970
TI - Solving Nonlinear Fractional PDEs with Applications to Physics and Engineering Using the Laplace Residual Power Series Method
T2 - International Journal of Differential Equations
AU - Ali, Khalid K.
AU - Abd Elbary, F. E.
AU - Abdel-wahed, Mohamed S.
AU - Elsisy, Mohamed A
AU - Semary, Mourad S
PY - 2023
DA - 2023/12/27
PB - Hindawi Limited
SP - 1-19
VL - 2023
SN - 1687-9643
SN - 1687-9651
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Ali,
author = {Khalid K. Ali and F. E. Abd Elbary and Mohamed S. Abdel-wahed and Mohamed A Elsisy and Mourad S Semary},
title = {Solving Nonlinear Fractional PDEs with Applications to Physics and Engineering Using the Laplace Residual Power Series Method},
journal = {International Journal of Differential Equations},
year = {2023},
volume = {2023},
publisher = {Hindawi Limited},
month = {dec},
url = {https://doi.org/10.1155/2023/1240970},
pages = {1--19},
doi = {10.1155/2023/1240970}
}