volume 2016 pages 1-8

Approximate Conformal Mappings and Elasticity Theory

Publication typeJournal Article
Publication date2016-08-28
SJR
CiteScore
Impact factor
ISSN23144963, 23144971
Analysis
Abstract

Here, we present the new method of approximate conformal mapping of the unit disk to a one-connected domain with smooth boundary without auxiliary constructions and iterations. The mapping function is a Taylor polynomial. The method is applicable to elasticity problems solution.

Found 
Found 

Top-30

Publishers

1
2
Springer Nature
2 publications, 25%
Walter de Gruyter
1 publication, 12.5%
Rocky Mountain Mathematics Consortium
1 publication, 12.5%
Mathematical Sciences Publishers
1 publication, 12.5%
MDPI
1 publication, 12.5%
Hindawi Limited
1 publication, 12.5%
Pleiades Publishing
1 publication, 12.5%
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
8
Share
Cite this
GOST |
Cite this
GOST Copy
Ivanshin P., Shirokova E. A. Approximate Conformal Mappings and Elasticity Theory // Journal of Complex Analysis. 2016. Vol. 2016. pp. 1-8.
GOST all authors (up to 50) Copy
Ivanshin P., Shirokova E. A. Approximate Conformal Mappings and Elasticity Theory // Journal of Complex Analysis. 2016. Vol. 2016. pp. 1-8.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1155/2016/4367205
UR - https://doi.org/10.1155/2016/4367205
TI - Approximate Conformal Mappings and Elasticity Theory
T2 - Journal of Complex Analysis
AU - Ivanshin, Pyotr
AU - Shirokova, Elena A.
PY - 2016
DA - 2016/08/28
PB - Hindawi Limited
SP - 1-8
VL - 2016
SN - 2314-4963
SN - 2314-4971
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2016_Ivanshin,
author = {Pyotr Ivanshin and Elena A. Shirokova},
title = {Approximate Conformal Mappings and Elasticity Theory},
journal = {Journal of Complex Analysis},
year = {2016},
volume = {2016},
publisher = {Hindawi Limited},
month = {aug},
url = {https://doi.org/10.1155/2016/4367205},
pages = {1--8},
doi = {10.1155/2016/4367205}
}
Profiles