Open Access
Ensemble Classification Based on Feature Selection for Environmental Sound Recognition
Тип публикации: Journal Article
Дата публикации: 2019-02-27
scimago Q2
SJR: 0.400
CiteScore: —
Impact factor: —
ISSN: 1024123X, 15635147
General Mathematics
General Engineering
Краткое описание
Environmental sound recognition has been a hot topic in the domain of audio recognition. How to select the optimal feature subsets and enhance the performance of classification precisely is an urgent problem to be solved. Ensemble learning, a new kind of method presented recently, has been an effective way to improve the accuracy of classification in feature selection. In this paper, experiments were performed on environmental sound dataset. An improved method based on constraint score and multimodels ensemble feature selection methods (MmEnFs) were exploited in the experiments. The experimental results show that when enough attributes are selected, the improved method can get a better performance compared to other feature selection methods. And the ensemble feature selection method, which combines other methods, can obtain the optimal performance in most cases.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
IEEE Access
1 публикация, 5.88%
|
|
|
Journal of Supercomputing
1 публикация, 5.88%
|
|
|
International Journal of Speech Technology
1 публикация, 5.88%
|
|
|
Multimedia Tools and Applications
1 публикация, 5.88%
|
|
|
IEEE Sensors Journal
1 публикация, 5.88%
|
|
|
International Journal of Photoenergy
1 публикация, 5.88%
|
|
|
BioMed Research International
1 публикация, 5.88%
|
|
|
Mathematical Problems in Engineering
1 публикация, 5.88%
|
|
|
Applied Mathematics and Nonlinear Sciences
1 публикация, 5.88%
|
|
|
Applied Acoustics
1 публикация, 5.88%
|
|
|
Journal of Cheminformatics
1 публикация, 5.88%
|
|
|
Journal of Computer-Aided Molecular Design
1 публикация, 5.88%
|
|
|
1
|
Издатели
|
1
2
3
4
5
6
7
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
7 публикаций, 41.18%
|
|
|
Springer Nature
5 публикаций, 29.41%
|
|
|
Hindawi Limited
3 публикации, 17.65%
|
|
|
Walter de Gruyter
1 публикация, 5.88%
|
|
|
Elsevier
1 публикация, 5.88%
|
|
|
1
2
3
4
5
6
7
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
17
Всего цитирований:
17
Цитирований c 2024:
6
(35.29%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Zhao S. et al. Ensemble Classification Based on Feature Selection for Environmental Sound Recognition // Mathematical Problems in Engineering. 2019. Vol. 2019. pp. 1-7.
ГОСТ со всеми авторами (до 50)
Скопировать
Zhao S., Zhang Y., Xu H., Han T. Ensemble Classification Based on Feature Selection for Environmental Sound Recognition // Mathematical Problems in Engineering. 2019. Vol. 2019. pp. 1-7.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1155/2019/4318463
UR - https://doi.org/10.1155/2019/4318463
TI - Ensemble Classification Based on Feature Selection for Environmental Sound Recognition
T2 - Mathematical Problems in Engineering
AU - Zhao, Shuai
AU - Zhang, Yan
AU - Xu, Haifeng
AU - Han, Te
PY - 2019
DA - 2019/02/27
PB - Hindawi Limited
SP - 1-7
VL - 2019
SN - 1024-123X
SN - 1563-5147
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2019_Zhao,
author = {Shuai Zhao and Yan Zhang and Haifeng Xu and Te Han},
title = {Ensemble Classification Based on Feature Selection for Environmental Sound Recognition},
journal = {Mathematical Problems in Engineering},
year = {2019},
volume = {2019},
publisher = {Hindawi Limited},
month = {feb},
url = {https://doi.org/10.1155/2019/4318463},
pages = {1--7},
doi = {10.1155/2019/4318463}
}