том 29 издание 2 страницы 211-237

Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions

M. Virgolin 1
T. Alderliesten 2
C. Witteveen 3
P. A. N. Bosman 4
Тип публикацииJournal Article
Дата публикации2020-06-23
scimago Q2
wos Q2
БС1
SJR0.713
CiteScore6.5
Impact factor3.4
ISSN10636560, 15309304
Computational Mathematics
Краткое описание

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a model-based EA framework that has been shown to perform well in several domains, including Genetic Programming (GP). Differently from traditional EAs where variation acts blindly, GOMEA learns a model of interdependencies within the genotype, that is, the linkage, to estimate what patterns to propagate. In this article, we study the role of Linkage Learning (LL) performed by GOMEA in Symbolic Regression (SR). We show that the non-uniformity in the distribution of the genotype in GP populations negatively biases LL, and propose a method to correct for this. We also propose approaches to improve LL when ephemeral random constants are used. Furthermore, we adapt a scheme of interleaving runs to alleviate the burden of tuning the population size, a crucial parameter for LL, to SR. We run experiments on 10 real-world datasets, enforcing a strict limitation on solution size, to enable interpretability. We find that the new LL method outperforms the standard one, and that GOMEA outperforms both traditional and semantic GP. We also find that the small solutions evolved by GOMEA are competitive with tuned decision trees, making GOMEA a promising new approach to SR.

Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
Lecture Notes in Computer Science
11 публикаций, 12.79%
Knowledge-Based Systems
4 публикации, 4.65%
Genetic Programming and Evolvable Machines
4 публикации, 4.65%
IEEE Transactions on Evolutionary Computation
3 публикации, 3.49%
Machine Learning: Science and Technology
3 публикации, 3.49%
Scientific Reports
1 публикация, 1.16%
Soft Computing
1 публикация, 1.16%
Advances in Radiation Oncology
1 публикация, 1.16%
Engineering Applications of Artificial Intelligence
1 публикация, 1.16%
Journal of Energy Chemistry
1 публикация, 1.16%
Information Fusion
1 публикация, 1.16%
Physics in Medicine and Biology
1 публикация, 1.16%
Archives of Computational Methods in Engineering
1 публикация, 1.16%
Journal of Big Data
1 публикация, 1.16%
Arabian Journal for Science and Engineering
1 публикация, 1.16%
Astrophysical Journal
1 публикация, 1.16%
Eye
1 публикация, 1.16%
Journal of Advances in Modeling Earth Systems
1 публикация, 1.16%
Genetic and Evolutionary Computation
1 публикация, 1.16%
Physical Review D
1 публикация, 1.16%
Proceedings of the National Academy of Sciences of the United States of America
1 публикация, 1.16%
Science China: Physics, Mechanics and Astronomy
1 публикация, 1.16%
Interdisciplinary Materials
1 публикация, 1.16%
International Journal of Applied Earth Observation and Geoinformation
1 публикация, 1.16%
Energy
1 публикация, 1.16%
Astronomy and Astrophysics
1 публикация, 1.16%
Applied Soft Computing Journal
1 публикация, 1.16%
Computer Physics Communications
1 публикация, 1.16%
Communications in Computer and Information Science
1 публикация, 1.16%
2
4
6
8
10
12

Издатели

5
10
15
20
25
30
Springer Nature
28 публикаций, 32.56%
Elsevier
14 публикаций, 16.28%
Association for Computing Machinery (ACM)
14 публикаций, 16.28%
Institute of Electrical and Electronics Engineers (IEEE)
11 публикаций, 12.79%
IOP Publishing
4 публикации, 4.65%
American Physical Society (APS)
3 публикации, 3.49%
American Astronomical Society
1 публикация, 1.16%
American Geophysical Union
1 публикация, 1.16%
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 1.16%
Wiley
1 публикация, 1.16%
EDP Sciences
1 публикация, 1.16%
American Chemical Society (ACS)
1 публикация, 1.16%
MDPI
1 публикация, 1.16%
SPIE-Intl Soc Optical Eng
1 публикация, 1.16%
AIP Publishing
1 публикация, 1.16%
5
10
15
20
25
30
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
86
Поделиться
Цитировать
ГОСТ |
Цитировать
Virgolin M. et al. Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions // Evolutionary Computation. 2020. Vol. 29. No. 2. pp. 211-237.
ГОСТ со всеми авторами (до 50) Скопировать
Virgolin M., Alderliesten T., Witteveen C., Bosman P. A. N. Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions // Evolutionary Computation. 2020. Vol. 29. No. 2. pp. 211-237.
RIS |
Цитировать
TY - JOUR
DO - 10.1162/evco_a_00278
UR - https://doi.org/10.1162/evco_a_00278
TI - Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions
T2 - Evolutionary Computation
AU - Virgolin, M.
AU - Alderliesten, T.
AU - Witteveen, C.
AU - Bosman, P. A. N.
PY - 2020
DA - 2020/06/23
PB - MIT Press
SP - 211-237
IS - 2
VL - 29
PMID - 32574084
SN - 1063-6560
SN - 1530-9304
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Virgolin,
author = {M. Virgolin and T. Alderliesten and C. Witteveen and P. A. N. Bosman},
title = {Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions},
journal = {Evolutionary Computation},
year = {2020},
volume = {29},
publisher = {MIT Press},
month = {jun},
url = {https://doi.org/10.1162/evco_a_00278},
number = {2},
pages = {211--237},
doi = {10.1162/evco_a_00278}
}
MLA
Цитировать
Virgolin, M., et al. “Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions.” Evolutionary Computation, vol. 29, no. 2, Jun. 2020, pp. 211-237. https://doi.org/10.1162/evco_a_00278.