том 97 издание 8 страницы 003754972199603

Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem

Тип публикацииJournal Article
Дата публикации2021-03-05
scimago Q2
wos Q3
БС2
SJR0.382
CiteScore3.8
Impact factor2.0
ISSN00375497, 17413133
Computer Graphics and Computer-Aided Design
Software
Modeling and Simulation
Краткое описание

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer mortality in women around the world. However, it can be controlled effectively by early diagnosis, followed by effective treatment. Clinical specialists take the advantages of computer-aided diagnosis (CAD) systems to make their diagnosis as accurate as possible. Deep learning techniques, such as the convolutional neural network (CNN), due to their classification capabilities on learned feature methods and ability of working with complex images, have been widely adopted in CAD systems. The parameters of the network, including the weights of the convolution filters and the weights of the fully connected layers, play a crucial role in the classification accuracy of any CNN model. The back-propagation technique is the most frequently used approach for training the CNN. However, this technique has some disadvantages, such as getting stuck in local minima. In this study, we propose to optimize the weights of the CNN using the genetic algorithm (GA). The work consists of designing a CNN model to facilitate the classification process, training the model using three different optimizers (mini-batch gradient descent, Adam, and GA), and evaluating the model through various experiments on the BreakHis dataset. We show that the CNN model trained through the GA performs as well as the Adam optimizer with a classification accuracy of 85%.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
IEEE Access
6 публикаций, 12.77%
Simulation
3 публикации, 6.38%
Biomedical Signal Processing and Control
2 публикации, 4.26%
Journal of Intelligent and Fuzzy Systems
2 публикации, 4.26%
PeerJ Computer Science
2 публикации, 4.26%
Bioengineering
1 публикация, 2.13%
Neural Computing and Applications
1 публикация, 2.13%
Neural Processing Letters
1 публикация, 2.13%
Measurement Sensors
1 публикация, 2.13%
Materials Today: Proceedings
1 публикация, 2.13%
Lecture Notes in Networks and Systems
1 публикация, 2.13%
Lecture Notes in Electrical Engineering
1 публикация, 2.13%
IEEE Transactions on Computational Social Systems
1 публикация, 2.13%
Advances in Clinical Medicine
1 публикация, 2.13%
ITM Web of Conferences
1 публикация, 2.13%
Lecture Notes in Computer Science
1 публикация, 2.13%
Mobile Networks and Applications
1 публикация, 2.13%
Cureus
1 публикация, 2.13%
Knowledge-Based Systems
1 публикация, 2.13%
PLoS ONE
1 публикация, 2.13%
Medical Engineering and Physics
1 публикация, 2.13%
Signals and Communication Technology
1 публикация, 2.13%
Journal of Supercomputing
1 публикация, 2.13%
Digital Health
1 публикация, 2.13%
SN Computer Science
1 публикация, 2.13%
Life Cycle Reliability and Safety Engineering
1 публикация, 2.13%
American Journal of Clinical Oncology: Cancer Clinical Trials
1 публикация, 2.13%
Human-Intelligent Systems Integration
1 публикация, 2.13%
International Journal of Systems Assurance Engineering and Management
1 публикация, 2.13%
1
2
3
4
5
6

Издатели

2
4
6
8
10
12
14
Springer Nature
14 публикаций, 29.79%
Institute of Electrical and Electronics Engineers (IEEE)
14 публикаций, 29.79%
SAGE
6 публикаций, 12.77%
Elsevier
6 публикаций, 12.77%
PeerJ
2 публикации, 4.26%
MDPI
1 публикация, 2.13%
Hans Publishers
1 публикация, 2.13%
EDP Sciences
1 публикация, 2.13%
Public Library of Science (PLoS)
1 публикация, 2.13%
Ovid Technologies (Wolters Kluwer Health)
1 публикация, 2.13%
2
4
6
8
10
12
14
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
47
Поделиться
Цитировать
ГОСТ |
Цитировать
Davoudi K., Thulasiraman P. Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem // Simulation. 2021. Vol. 97. No. 8. p. 003754972199603.
ГОСТ со всеми авторами (до 50) Скопировать
Davoudi K., Thulasiraman P. Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem // Simulation. 2021. Vol. 97. No. 8. p. 003754972199603.
RIS |
Цитировать
TY - JOUR
DO - 10.1177/0037549721996031
UR - https://doi.org/10.1177/0037549721996031
TI - Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem
T2 - Simulation
AU - Davoudi, Khatereh
AU - Thulasiraman, Parimala
PY - 2021
DA - 2021/03/05
PB - SAGE
SP - 003754972199603
IS - 8
VL - 97
PMID - 34366489
SN - 0037-5497
SN - 1741-3133
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Davoudi,
author = {Khatereh Davoudi and Parimala Thulasiraman},
title = {Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem},
journal = {Simulation},
year = {2021},
volume = {97},
publisher = {SAGE},
month = {mar},
url = {https://doi.org/10.1177/0037549721996031},
number = {8},
pages = {003754972199603},
doi = {10.1177/0037549721996031}
}
MLA
Цитировать
Davoudi, Khatereh, and Parimala Thulasiraman. “Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem.” Simulation, vol. 97, no. 8, Mar. 2021, p. 003754972199603. https://doi.org/10.1177/0037549721996031.