том 2675 издание 7 страницы 454-466

Random Forest Model for Trip End Identification Using Cellular Phone and Points of Interest Data

Тип публикацииJournal Article
Дата публикации2021-07-01
scimago Q2
wos Q3
БС2
SJR0.388
CiteScore3.4
Impact factor1.8
ISSN03611981, 21694052
Mechanical Engineering
Civil and Structural Engineering
Краткое описание

Cellular phone data has been proven to be valuable in the analysis of residents’ travel patterns. Existing studies mostly identify the trip ends through rule-based or clustering algorithms. These methods largely depend on subjective experience and users’ communication behaviors. Moreover, limited by privacy policy, the accuracy of these methods is difficult to assess. In this paper, points of interest data is applied to supplement cellular phone data’s missing information generated by users’ behaviors. Specifically, a random forest model for trip end identification is proposed using multi-dimensional attributes. A field data acquisition test is designed and conducted with communication operators to implement synchronized cellular phone data and real trip information collection. The proposed identification approach is empirically evaluated with real trip information. Results show that the overall trip end detection precision and recall reach 95.2% and 88.7% with an average distance error of 269 m, and the time errors of the trip ends are less than 10 min. Compared with the rule-based approach, clustering algorithm, naive Bayes method, and support vector machine, the proposed method has better performance in accuracy and consistency.

Найдено 
Найдено 

Топ-30

Журналы

1
2
IET Intelligent Transport Systems
2 публикации, 33.33%
Journal of Advanced Transportation
2 публикации, 33.33%
Scientific Reports
1 публикация, 16.67%
Transportation Research, Part A: Policy and Practice
1 публикация, 16.67%
1
2

Издатели

1
2
Institution of Engineering and Technology (IET)
2 публикации, 33.33%
Hindawi Limited
2 публикации, 33.33%
Springer Nature
1 публикация, 16.67%
Elsevier
1 публикация, 16.67%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Поделиться
Цитировать
ГОСТ |
Цитировать
Yang F. et al. Random Forest Model for Trip End Identification Using Cellular Phone and Points of Interest Data // Transportation Research Record. 2021. Vol. 2675. No. 7. pp. 454-466.
ГОСТ со всеми авторами (до 50) Скопировать
Yang F., Wang Y., Jin P. J., Li D., Yao Z. Random Forest Model for Trip End Identification Using Cellular Phone and Points of Interest Data // Transportation Research Record. 2021. Vol. 2675. No. 7. pp. 454-466.
RIS |
Цитировать
TY - JOUR
DO - 10.1177/03611981211031537
UR - https://doi.org/10.1177/03611981211031537
TI - Random Forest Model for Trip End Identification Using Cellular Phone and Points of Interest Data
T2 - Transportation Research Record
AU - Yang, Fei
AU - Wang, Yanchen
AU - Jin, Peter J.
AU - Li, Dingbang
AU - Yao, Zhenxing
PY - 2021
DA - 2021/07/01
PB - SAGE
SP - 454-466
IS - 7
VL - 2675
SN - 0361-1981
SN - 2169-4052
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Yang,
author = {Fei Yang and Yanchen Wang and Peter J. Jin and Dingbang Li and Zhenxing Yao},
title = {Random Forest Model for Trip End Identification Using Cellular Phone and Points of Interest Data},
journal = {Transportation Research Record},
year = {2021},
volume = {2675},
publisher = {SAGE},
month = {jul},
url = {https://doi.org/10.1177/03611981211031537},
number = {7},
pages = {454--466},
doi = {10.1177/03611981211031537}
}
MLA
Цитировать
Yang, Fei, et al. “Random Forest Model for Trip End Identification Using Cellular Phone and Points of Interest Data.” Transportation Research Record, vol. 2675, no. 7, Jul. 2021, pp. 454-466. https://doi.org/10.1177/03611981211031537.