Enhancing co-pyrolysis process of biomass and coal using machine learning insights and Shapley additive explanations based on cooperative game theory

Quang Dung Le 1, 2
Prabhu Paramasivam 3
Jasgurpreet Singh Chohan 4
Ranjna Sirohi 5
Van Hung Bui 6
Jerzy Kowalski 7
Le Huu Cuong 8
Viet Dung Tran 9
Publication typeJournal Article
Publication date2025-02-17
scimago Q2
wos Q1
SJR0.779
CiteScore9.5
Impact factor4.8
ISSN0958305X, 20484070
Abstract

The co-pyrolysis process is an essential method for energy extraction from waste biomass and coal although the co-pyrolysis technology of biomass and coal presents a complex engineering challenge. To address these challenges, modern data-driven ensemble and tree-based machine learning approaches offer a promising solution. This study provides a comprehensive analysis of various machine learning techniques, including linear regression (LR), decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and adaptive boosting (AdaBoost) to predict the outcome models of pyrolysis oil yield, syngas yield, char yield, and syngas lower heating value from co-pyrolysis of biomass and coal. The models are evaluated using different statistical metrics. The DT-based pyrolysis oil yield model outperformed the other four models (LR, RF, XGBoost, and AdaBoost) in predicting pyrolysis oil with robust accuracy, achieving an R2 of 0.999 and a mean squared error (MSE) close to zero during the model training phase. Similarly, the DT-based syngas yield model showed a high R2 of 0.999 and near-zero MSE while the based char yield model excelled the others with a high R2 of 0.999 and negligible MSE during the model training phase. In the subsequent phase, explainable artificial intelligence-based Shapley additive explanation (SHAP) values were estimated for feature importance analysis. The SHAP analysis identified key features for pyrolysis oil and syngas yield, with biomass blending ratio and reaction time being the most crucial, while reaction time and temperature were the most important for the syngas LHV model.

Found 
Found 

Top-30

Journals

1
Case Studies in Thermal Engineering
1 publication, 100%
1

Publishers

1
Elsevier
1 publication, 100%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
1
Share
Cite this
GOST |
Cite this
GOST Copy
Le Q. D. et al. Enhancing co-pyrolysis process of biomass and coal using machine learning insights and Shapley additive explanations based on cooperative game theory // Energy and Environment. 2025.
GOST all authors (up to 50) Copy
Le Q. D., Paramasivam P., Chohan J. S., Sirohi R., Bui V. H., Kowalski J., Huu Cuong L., Tran V. D. Enhancing co-pyrolysis process of biomass and coal using machine learning insights and Shapley additive explanations based on cooperative game theory // Energy and Environment. 2025.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1177/0958305x251315408
UR - https://journals.sagepub.com/doi/10.1177/0958305X251315408
TI - Enhancing co-pyrolysis process of biomass and coal using machine learning insights and Shapley additive explanations based on cooperative game theory
T2 - Energy and Environment
AU - Le, Quang Dung
AU - Paramasivam, Prabhu
AU - Chohan, Jasgurpreet Singh
AU - Sirohi, Ranjna
AU - Bui, Van Hung
AU - Kowalski, Jerzy
AU - Huu Cuong, Le
AU - Tran, Viet Dung
PY - 2025
DA - 2025/02/17
PB - SAGE
SN - 0958-305X
SN - 2048-4070
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Le,
author = {Quang Dung Le and Prabhu Paramasivam and Jasgurpreet Singh Chohan and Ranjna Sirohi and Van Hung Bui and Jerzy Kowalski and Le Huu Cuong and Viet Dung Tran},
title = {Enhancing co-pyrolysis process of biomass and coal using machine learning insights and Shapley additive explanations based on cooperative game theory},
journal = {Energy and Environment},
year = {2025},
publisher = {SAGE},
month = {feb},
url = {https://journals.sagepub.com/doi/10.1177/0958305X251315408},
doi = {10.1177/0958305x251315408}
}