том 29 издание 6 страницы 567-578

Dual exploration strategies using artificial spiking neural networks in a robotic learning task

André Cyr 1
Julie Morand-Ferron 2
Frédéric Thériault 3
Тип публикацииJournal Article
Дата публикации2020-06-17
scimago Q1
wos Q2
БС2
SJR0.413
CiteScore3.9
Impact factor1.3
ISSN10597123, 17412633
Experimental and Cognitive Psychology
Behavioral Neuroscience
Краткое описание

Spatial information can be valuable, but new environments may be perceived as risky and thus often evoke fear responses and risk-averse exploration strategies such as thigmotaxis or wall-following behavior. Individual differences in risk-taking (boldness) and thigmotaxis have been reported in natural taxa, which may benefit their survival. In neurorobotic, the common approach is to reproduce cognitive phenomena with multiple levels of bio-inspiration into robotic scenarios. Since autonomous robots may benefit from these different behaviors in exploration tasks, this study aims at simulating two exploration strategies in a virtual robot controlled by a spiking neural network. The experimental context consists in a visual learning task solved through an operant conditioning procedure. Results suggest that the proposed neural architecture sustains both behaviors, switching from one to the other by external cues. This original bio-inspired model could be used as a first step toward further investigations of neurorobotic personality modulated by learning and complex exploration contexts.

Найдено 
Найдено 

Топ-30

Журналы

1
IEEE Access
1 публикация, 50%
Facets
1 публикация, 50%
1

Издатели

1
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 50%
Canadian Science Publishing
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Cyr A., Morand-Ferron J., Thériault F. Dual exploration strategies using artificial spiking neural networks in a robotic learning task // Adaptive Behavior. 2020. Vol. 29. No. 6. pp. 567-578.
ГОСТ со всеми авторами (до 50) Скопировать
Cyr A., Morand-Ferron J., Thériault F. Dual exploration strategies using artificial spiking neural networks in a robotic learning task // Adaptive Behavior. 2020. Vol. 29. No. 6. pp. 567-578.
RIS |
Цитировать
TY - JOUR
DO - 10.1177/1059712320924744
UR - https://doi.org/10.1177/1059712320924744
TI - Dual exploration strategies using artificial spiking neural networks in a robotic learning task
T2 - Adaptive Behavior
AU - Cyr, André
AU - Morand-Ferron, Julie
AU - Thériault, Frédéric
PY - 2020
DA - 2020/06/17
PB - SAGE
SP - 567-578
IS - 6
VL - 29
SN - 1059-7123
SN - 1741-2633
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Cyr,
author = {André Cyr and Julie Morand-Ferron and Frédéric Thériault},
title = {Dual exploration strategies using artificial spiking neural networks in a robotic learning task},
journal = {Adaptive Behavior},
year = {2020},
volume = {29},
publisher = {SAGE},
month = {jun},
url = {https://doi.org/10.1177/1059712320924744},
number = {6},
pages = {567--578},
doi = {10.1177/1059712320924744}
}
MLA
Цитировать
Cyr, André, et al. “Dual exploration strategies using artificial spiking neural networks in a robotic learning task.” Adaptive Behavior, vol. 29, no. 6, Jun. 2020, pp. 567-578. https://doi.org/10.1177/1059712320924744.